Quantum Cohomology of Minuscule Homogeneous Spaces II Hidden Symmetries

被引:13
作者
Chaput, Pierre-Emmanuel [1 ]
Manivel, Laurent [2 ]
Perrin, Nicolas [3 ]
机构
[1] UFR Sci & Tech, CNRS, Lab Math Jean Leray, UMR 6629, F-44322 Nantes 03, France
[2] Univ Grenoble 1, CNRS, UMR 5582, Inst Fournier, F-38402 St Martin Dheres, France
[3] Univ Paris 06, Inst Math, F-75252 Paris 05, France
关键词
D O I
10.1093/imrn/rnm107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the quantum cohomology ring of any minuscule or cominuscule homogeneous space, once localized at the quantum parameter, has a nontrivial involution mapping Schubert classes to multiples of Schubert classes. This can be stated as a strange duality property for the Gromov-Witten invariants, which turn out to be very symmetric.
引用
收藏
页数:29
相关论文
共 10 条
[1]  
Bourbaki N, 1954, GROUPES ALGEBRES LIE
[2]  
CHAPUT PE, ARXIVMATHAG0607492
[3]   On the quantum product of Schubert classes [J].
Fulton, W ;
Woodward, C .
JOURNAL OF ALGEBRAIC GEOMETRY, 2004, 13 (04) :641-661
[4]  
HENGELBROCK H, ARXIVMATHAG0205260
[5]   Quantum cohomology of orthogonal Grassmannians [J].
Kresch, A ;
Tamvakis, H .
COMPOSITIO MATHEMATICA, 2004, 140 (02) :482-500
[6]   Quantum cohomology of the Lagrangian Grassmannian [J].
Kresch, A ;
Tamvakis, H .
JOURNAL OF ALGEBRAIC GEOMETRY, 2003, 12 (04) :777-810
[7]  
MCDUFF D, 2006, INT MATH RES PAP, P1
[8]  
Postnikov A., 2001, CONT MATH, V276, P251
[9]   AFFINE APPROACH TO QUANTUM SCHUBERT CALCULUS [J].
Postnikov, Alexander .
DUKE MATHEMATICAL JOURNAL, 2005, 128 (03) :473-509
[10]   π1 of symplectic automorphism groups and invertibles in quantum homology rings [J].
Seidel, P .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1997, 7 (06) :1046-1095