Normal high order elements in finite field extensions based on the cyclotomic polynomials

被引:2
作者
Popovych, R. [1 ]
Skuratovskii, R. [2 ]
机构
[1] Lviv Polytech Natl Univ, Inst Comp Technol, Bandery Str 12, UA-79013 Lvov, Ukraine
[2] Igor Sikorsky Kiev Polytech Inst, Ave Pobedy, UA-03056 Kiev, Ukraine
来源
ALGEBRA AND DISCRETE MATHEMATICS | 2020年 / 29卷 / 02期
关键词
finite field; cyclotomic polynomial; normal basis; high multiplicative order element;
D O I
10.12958/adm1117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider elements which are both of high multiplicative order and normal in extensions F-qm of the field F-q. If the extension is defined by a cyclotomic polynomial, we construct such elements explicitly and give explicit lower bounds on their orders.
引用
收藏
页码:241 / 248
页数:8
相关论文
共 9 条
[1]   MULTIPLICATIVE ORDER OF GAUSS PERIODS [J].
Ahmadi, Omran ;
Shparlinski, Igor E. ;
Voloch, Jose Felipe .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (04) :877-882
[2]   Existence and properties of k-normal elements over finite fields [J].
Huczynska, Sophie ;
Mullen, Gary L. ;
Panario, Daniel ;
Thomson, David .
FINITE FIELDS AND THEIR APPLICATIONS, 2013, 24 :170-183
[3]  
Jungnickel D., 1996, Math. Mag, V69, P53
[4]  
Lidl R., 1997, Finite Fields
[5]  
Mullen Gary L., 2013, Handbook of Finite Fields, Discrete Mathematics and its Applications, V1st
[6]   Sharpening of the Explicit Lower Bounds for the Order of Elements in Finite Field Extensions Based on Cyclotomic Polynomials [J].
Popovych, R. .
UKRAINIAN MATHEMATICAL JOURNAL, 2014, 66 (06) :916-927
[7]   Elements of high order in finite fields of the form Fq[x]/Φr(x) [J].
Popovych, Roman .
FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (04) :700-710
[8]  
Skuratovskii R. V., 2011, B T SHEVCHENKO NA PM, P49
[9]   Orders of Gauss periods in finite fields [J].
von zur Gathen, J ;
Shparlinski, I .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1998, 9 (01) :15-24