p-adic valued probability measures

被引:40
作者
Khrennikov, A [1 ]
机构
[1] RUHR UNIV BOCHUM, INST MATH, D-44780 BOCHUM, GERMANY
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 1996年 / 7卷 / 03期
关键词
D O I
10.1016/0019-3577(96)83723-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop an analogue of the theory of probability, where probabilities of events may belong to the fields of p-adic numbers Q(p). As a basis, we use the Monna-Springer theory of integration with respect to non-Archimedean valued measures on zero-dimensional topological spaces.
引用
收藏
页码:311 / 330
页数:20
相关论文
共 18 条
[1]   NON-ARCHIMEDEAN STRINGS [J].
FREUND, PGO ;
OLSON, M .
PHYSICS LETTERS B, 1987, 199 (02) :186-190
[2]   MATHEMATICAL-METHODS OF NON-ARCHIMEDEAN PHYSICS [J].
KHRENNIKOV, AY .
RUSSIAN MATHEMATICAL SURVEYS, 1990, 45 (04) :87-125
[3]  
KHRENNIKOV AY, 1992, DOKL AKAD NAUK SSSR+, V322, P1075
[4]   P-ADIC QUANTUM-MECHANICS WITH P-ADIC VALUED FUNCTIONS [J].
KHRENNIKOV, AY .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (04) :932-937
[5]  
KHRENNIKOV AY, 1990, NAGOAY, V127
[6]  
Kolmogoroff A. N., 1933, Grundbegriffe der Wahrscheinlichkeitsrechnung
[7]  
KREHNNIKOV AY, 1992, DOKL ACAD NAUK SSS M, V326, P1075
[8]  
MONNA A, 1963, INDAG MATH, V25, P634
[9]  
MONNA A, 1970, ANAL ARCHIMEDIENNE
[10]   A REVIEW OF EXTENDED PROBABILITIES [J].
MUCKENHEIM, W ;
LUDWIG, G ;
DEWDNEY, C ;
HOLLAND, PR ;
KYPRIANIDIS, A ;
VIGIER, JP ;
PETRONI, NC ;
BARTLETT, MS ;
JAYNES, ET .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1986, 133 (06) :337-401