Critical hydrogen concentration for crack propagation in a CrMo steel: Targeted experiments for accurate numerical modelling

被引:10
作者
Borja Peral, Luis [1 ]
Fernandez-Pariente, Ines [2 ]
Colombo, Chiara [3 ]
机构
[1] Univ Burgos, Higher Polytech Sch, Dept Civil Engn, Struct Integr Res Grp, Ave Cantabria S-N, Burgos 09006, Spain
[2] Univ Oviedo, Campus Gijon,East Bldg, Gijon 33203, Spain
[3] Politecn Milan, Dept Mech Engn, Via La Masa 1, I-20156 Milan, Italy
关键词
Hydrogen embrittlement; Hydrogen diffusion; CrMo steel; Crack tip; Cohesive Zone Modelling; TENSILE PROPERTIES; GASEOUS-HYDROGEN; EMBRITTLEMENT; TRANSPORT; FRACTURE; PLASTICITY; DIFFUSION; BEHAVIOR; GROWTH; GRADES;
D O I
10.1016/j.engfracmech.2022.108764
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This study focuses on CrMo steel experiencing decohesion mechanism in presence of hydrogen. A tailored experimental characterization is performed with tensile, permeation and toughness experimental tests to obtain all the inputs for the numerical simulations of a propagating crack in a C(T) specimen. The used finite element framework is based on the cohesive zone modelling. The aim of the numerical model and of the work is the identification of a critical hydrogen concen-tration inducing crack tip propagation. Given the tailored inputs, these models accurately esti -mate the hydrogen concentrations in the lattice and the reversible traps, and follow their redistribution along the ligament during the time. From the obtained results, we could quantify that a decrease of two orders of magnitude in the test speed reduces the critical hydrogen con-centration at the crack tip, necessary to activate the failure of the first cohesive element and therefore the propagation, from 0.994 to 0.784 wppm, that is-21%.
引用
收藏
页数:17
相关论文
共 64 条
[1]   Hydrogen enhanced fatigue crack growth rates in a ferritic Fe-3 wt % Si alloy and a X70 pipeline steel [J].
Alvaro, Antonio ;
Wan, Di ;
Olden, Vigdis ;
Barnoush, Afrooz .
ENGINEERING FRACTURE MECHANICS, 2019, 219
[2]  
[Anonymous], 2017, Test Method for Density of Hydraulic Cement, DOI [DOI 10.1520/C0188-17, DOI 10.1520/C0039, 10.1520/C0039]
[3]  
ASTM, 2013, ASTM G129-00, V2013, P1, DOI [10.1520/G0129-00R13.2,00, DOI 10.1520/G0129-00R13.2,00]
[4]  
ASTM International, 2020, E182020B ASTM INT, DOI [10.1520/E1820-20B, DOI 10.1520/E1820-20B]
[5]   Coupling aspects in the simulation of hydrogen-induced stress-corrosion cracking [J].
Brocks, Wolfgang ;
Falkenberg, Rainer ;
Scheider, Ingo .
IUTAM SYMPOSIUM ON LINKING SCALES IN COMPUTATIONS: FROM MICROSTRUCTURE TO MACRO-SCALE PROPERTIES, 2012, 3 :11-24
[6]   Sensitivity to hydrogen embrittlement of AISI 4140 steel: A numerical study on fracture toughness [J].
Colombo, Chiara ;
Garcia, Alfredo Zafra ;
Belzunce, Javier ;
Pariente, Ines Fernandez .
THEORETICAL AND APPLIED FRACTURE MECHANICS, 2020, 110
[7]   Fatigue behavior of hydrogen pre-charged low alloy Cr-Mo steel [J].
Colombo, Chiara ;
Fumagalli, Gabriele ;
Bolzoni, Fabio ;
Gobbi, Giorgia ;
Vergani, Laura .
INTERNATIONAL JOURNAL OF FATIGUE, 2016, 83 :2-9
[8]   Slow strain rate technique for studying hydrogen induced cracking in 34CrMo4 high strength steel [J].
Conde, A. ;
de Damborenea, J. J. ;
Lopez-Escobar, J. M. ;
Perez-Arnaez, C. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (70) :34970-34982
[9]   Recent advances on hydrogen embrittlement of structural materials [J].
Dadfarnia, Mohsen ;
Nagao, Akihide ;
Wang, Shuai ;
Martin, May L. ;
Somerday, Brian P. ;
Sofronis, Petros .
INTERNATIONAL JOURNAL OF FRACTURE, 2015, 196 (1-2) :223-243
[10]  
Danziger Z., 2022, MATLAB CENT FILE EXC