Critical hydrogen concentration for crack propagation in a CrMo steel: Targeted experiments for accurate numerical modelling

被引:8
作者
Borja Peral, Luis [1 ]
Fernandez-Pariente, Ines [2 ]
Colombo, Chiara [3 ]
机构
[1] Univ Burgos, Higher Polytech Sch, Dept Civil Engn, Struct Integr Res Grp, Ave Cantabria S-N, Burgos 09006, Spain
[2] Univ Oviedo, Campus Gijon,East Bldg, Gijon 33203, Spain
[3] Politecn Milan, Dept Mech Engn, Via La Masa 1, I-20156 Milan, Italy
关键词
Hydrogen embrittlement; Hydrogen diffusion; CrMo steel; Crack tip; Cohesive Zone Modelling; TENSILE PROPERTIES; GASEOUS-HYDROGEN; EMBRITTLEMENT; TRANSPORT; FRACTURE; PLASTICITY; DIFFUSION; BEHAVIOR; GROWTH; GRADES;
D O I
10.1016/j.engfracmech.2022.108764
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This study focuses on CrMo steel experiencing decohesion mechanism in presence of hydrogen. A tailored experimental characterization is performed with tensile, permeation and toughness experimental tests to obtain all the inputs for the numerical simulations of a propagating crack in a C(T) specimen. The used finite element framework is based on the cohesive zone modelling. The aim of the numerical model and of the work is the identification of a critical hydrogen concen-tration inducing crack tip propagation. Given the tailored inputs, these models accurately esti -mate the hydrogen concentrations in the lattice and the reversible traps, and follow their redistribution along the ligament during the time. From the obtained results, we could quantify that a decrease of two orders of magnitude in the test speed reduces the critical hydrogen con-centration at the crack tip, necessary to activate the failure of the first cohesive element and therefore the propagation, from 0.994 to 0.784 wppm, that is-21%.
引用
收藏
页数:17
相关论文
共 64 条
  • [1] Hydrogen enhanced fatigue crack growth rates in a ferritic Fe-3 wt % Si alloy and a X70 pipeline steel
    Alvaro, Antonio
    Wan, Di
    Olden, Vigdis
    Barnoush, Afrooz
    [J]. ENGINEERING FRACTURE MECHANICS, 2019, 219
  • [2] [Anonymous], 2013, G5 ASTM, P1, DOI DOI 10.1520/G0076-07.2
  • [3] [Anonymous], 2015, C1293 ASTM, P1, DOI [DOI 10.1520/C0039, 10.1520/C0496_C0496M-17, DOI 10.1520/C0496_C0496M-17, 10.1520/C1293-08B.2, DOI 10.1520/C1293-08B.2, 10.1520/C0150_C0150M-20, DOI 10.1520/C0150_C0150M-20]
  • [4] ASTM International, E182020B ASTM INT, P1, DOI [10.1520/E1820-20B, DOI 10.1520/E1820-20B]
  • [5] Coupling aspects in the simulation of hydrogen-induced stress-corrosion cracking
    Brocks, Wolfgang
    Falkenberg, Rainer
    Scheider, Ingo
    [J]. IUTAM SYMPOSIUM ON LINKING SCALES IN COMPUTATIONS: FROM MICROSTRUCTURE TO MACRO-SCALE PROPERTIES, 2012, 3 : 11 - 24
  • [6] Sensitivity to hydrogen embrittlement of AISI 4140 steel: A numerical study on fracture toughness
    Colombo, Chiara
    Garcia, Alfredo Zafra
    Belzunce, Javier
    Pariente, Ines Fernandez
    [J]. THEORETICAL AND APPLIED FRACTURE MECHANICS, 2020, 110
  • [7] Fatigue behavior of hydrogen pre-charged low alloy Cr-Mo steel
    Colombo, Chiara
    Fumagalli, Gabriele
    Bolzoni, Fabio
    Gobbi, Giorgia
    Vergani, Laura
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2016, 83 : 2 - 9
  • [8] Slow strain rate technique for studying hydrogen induced cracking in 34CrMo4 high strength steel
    Conde, A.
    de Damborenea, J. J.
    Lopez-Escobar, J. M.
    Perez-Arnaez, C.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (70) : 34970 - 34982
  • [9] Recent advances on hydrogen embrittlement of structural materials
    Dadfarnia, Mohsen
    Nagao, Akihide
    Wang, Shuai
    Martin, May L.
    Somerday, Brian P.
    Sofronis, Petros
    [J]. INTERNATIONAL JOURNAL OF FRACTURE, 2015, 196 (1-2) : 223 - 243
  • [10] Danziger Z., 2022, MATLAB CENT FILE EXC