⟨x⟩ and ⟨x2⟩ of the pion PDF from lattice QCD with Nf=2+1+1 dynamical quark flavor

被引:32
|
作者
Oehm, M. [1 ]
Alexandrou, C. [2 ,3 ]
Constantinou, M. [4 ]
Jansen, K. [5 ]
Koutsou, G. [6 ]
Kostrzewa, B. [1 ]
Steffens, F. [1 ]
Urbach, C. [1 ]
Zafeiropoulos, S. [7 ]
机构
[1] Rheinische Friedrich Wilhelms Univ, Bonn, Germany
[2] Univ Cyprus, Nicosia, Cyprus
[3] Computat Based Sci & Technol Res Ctr, Nicosia, Cyprus
[4] Temple Univ, Philadelphia, PA 19122 USA
[5] NIC DESY Zeuthen, Zeuthen, Germany
[6] Cyprus Inst, Nicosia, Cyprus
[7] Heidelberg Univ, Heidelberg, Germany
基金
美国国家科学基金会;
关键词
DEEP-INELASTIC SCATTERING; LOOP ANOMALOUS DIMENSION; NONPERTURBATIVE RENORMALIZATION; PARTON DISTRIBUTIONS; 2ND MOMENT; C-QUARK; OPERATORS; MASSES;
D O I
10.1103/PhysRevD.99.014508
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using N-f = 2 + 1 + 1 lattice QCD, we determine the fermionic connected contributions to the first and second moments of the pion parton distribution function. Based on gauge configurations from the European Twisted Mass Collaboration, chiral and continuum extrapolations are performed using pion masses in the range of 230 to 500 MeV and three values of the lattice spacing. Finite volume effects are investigated using different volumes. In order to avoid mixing under renormalization for the second moment, we use an operator with two nonzero spatial components of momentum. Momenta are injected using twisted boundary conditions. Our final values read < x >(phys)(R) = 0.2075(106) and < x(2)>(phys)(R) = 0.163(33), determined at 2 GeV in the (MS) over bar scheme and with systematic and statistical uncertainties summed in quadrature.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Continuum limit physics from 2+1 flavor domain wall QCD
    Aoki, Y.
    Arthur, R.
    Blum, T.
    Boyle, P. A.
    Broemmel, D.
    Christ, N. H.
    Dawson, C.
    Flynn, J. M.
    Izubuchi, T.
    Jin, X-Y.
    Jung, C.
    Kelly, C.
    Li, M.
    Lichtl, A.
    Lightman, M.
    Lin, M. F.
    Mawhinney, R. D.
    Maynard, C. M.
    Ohta, S.
    Pendleton, B. J.
    Sachrajda, C. T.
    Scholz, E. E.
    Soni, A.
    Wennekers, J.
    Zanotti, J. M.
    Zhou, R.
    PHYSICAL REVIEW D, 2011, 83 (07):
  • [22] Nucleon isovector charges and twist-2 matrix elements with Nf=2+1 dynamical Wilson quarks
    Harris, Tim
    von Hippel, Georg
    Junnarkar, Parikshit
    Meyer, Harvey B.
    Ottnad, Konstantin
    Wilhelm, Jonas
    Wittig, Hartmut
    Wrang, Linus
    PHYSICAL REVIEW D, 2019, 100 (03)
  • [23] Nonperturbative determination of improvement coefficients using coordinate space correlators in Nf=2+1 lattice QCD
    Korcyl, Piotr
    Bali, Gunnar S.
    PHYSICAL REVIEW D, 2017, 95 (01)
  • [24] Scalar and vector form factors of D → π(K)lv decays with Nf=2+1+1 twisted fermions
    Lubicz, V.
    Riggio, L.
    Salerno, G.
    Simula, S.
    Tarantino, C.
    PHYSICAL REVIEW D, 2017, 96 (05)
  • [25] Singly and doubly charmed J=1/2 baryon spectrum from lattice QCD
    Liu, Liuming
    Lin, Huey-Wen
    Orginos, Kostas
    Walker-Loud, Andre
    PHYSICAL REVIEW D, 2010, 81 (09):
  • [26] Electromagnetic form factors of the nucleon from N f=2+1 lattice QCD
    Djukanovic, Dalibor
    von Hippel, Georg
    Meyer, Harvey B.
    Ottnad, Konstantin
    Salg, Miguel
    Wittig, Hartmut
    PHYSICAL REVIEW D, 2024, 109 (09)
  • [27] Analysis of the 1/2± flavor antitriplet heavy baryon states with QCD sum rules
    Wang, Zhi-Gang
    EUROPEAN PHYSICAL JOURNAL C, 2010, 68 (3-4): : 479 - 486
  • [28] The N3LO scheme-invariant QCD evolution of the non-singlet structure functions F2NS (x, Q2) and g1NS (x, Q2)
    Bluemlein, J.
    Saragnese, M.
    PHYSICS LETTERS B, 2021, 820
  • [29] SU(2) chiral perturbation theory low-energy constants from 2+1 flavor staggered lattice simulations
    Borsanyi, Szabolcs
    Duerr, Stephan
    Fodor, Zoltan
    Krieg, Stefan
    Schaefer, Andreas
    Scholz, Enno E.
    Szabo, Kalman K.
    PHYSICAL REVIEW D, 2013, 88 (01):
  • [30] Extreme behaviour of g(1)(x,Q(2)) at x->0
    Troshin, SM
    PHYSICS LETTERS B, 1997, 397 (1-2) : 133 - 136