A Survey of Deep Learning-Based Mesh Processing

被引:7
|
作者
Wang, He [1 ]
Zhang, Juyong [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
关键词
Geometric deep learning; Non-Euclidean space; Mesh; Convolution; Spectral domain; Spatial domain; DATABASE;
D O I
10.1007/s40304-021-00246-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the past ten years, deep learning technology has achieved a great success in many fields, like computer vision and speech recognition. Recently, large-scale geometry data become more and more available, and the learned geometry priors have been successfully applied to 3D computer vision and computer graphics fields. Different from the regular representation of images, surface meshes have irregular structures with different vertex numbers and topologies. Therefore, the traditional convolution neural networks used for images cannot be directly used to handle surface meshes, and thus, many methods have been proposed to solve this problem. In this paper, we provide a comprehensive survey of existing geometric deep learning methods for mesh processing. We first introduce the relevant knowledge and theoretical background of geometric deep learning and some basic mesh data knowledge, including some commonly used mesh datasets. Then, we review various deep learning models for mesh data with two different types: graph-based methods and mesh structure-based methods. We also review the deep learning-based applications for mesh data. In the final, we give some potential research directions in this field.
引用
收藏
页码:163 / 194
页数:32
相关论文
共 50 条
  • [21] A survey of deep learning-based network anomaly detection
    Kwon, Donghwoon
    Kim, Hyunjoo
    Kim, Jinoh
    Suh, Sang C.
    Kim, Ikkyun
    Kim, Kuinam J.
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 1): : 949 - 961
  • [22] Survey on Deep Learning-Based Point Cloud Compression
    Quach, Maurice
    Pang, Jiahao
    Tian, Dong
    Valenzise, Giuseppe
    Dufaux, Frederic
    FRONTIERS IN SIGNAL PROCESSING, 2022, 2
  • [23] Deep Learning-Based Crowd Scene Analysis Survey
    Elbishlawi, Sherif
    Abdelpakey, Mohamed H.
    Eltantawy, Agwad
    Shehata, Mohamed S.
    Mohamed, Mostafa M.
    JOURNAL OF IMAGING, 2020, 6 (09)
  • [24] A Survey on Deep Learning-Based Vehicular Communication Applications
    Lin, Chia-Hung
    Lin, Yu-Chien
    Wu, Yen-Jung
    Chung, Wei-Ho
    Lee, Ta-Sung
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2021, 93 (04): : 369 - 388
  • [25] A Survey on Deep Learning-Based Medical Image Registration
    Xu, Ronghao
    Liu, Chongxin
    Liu, Shuaitong
    Huang, Weijie
    Zhang, Menghua
    NEURAL COMPUTING FOR ADVANCED APPLICATIONS, NCAA 2024, PT I, 2025, 2181 : 332 - 346
  • [26] Deep Learning-Based Image and Video Inpainting: A Survey
    Quan, Weize
    Chen, Jiaxi
    Liu, Yanli
    Yan, Dong-Ming
    Wonka, Peter
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (07) : 2367 - 2400
  • [27] A Survey of Deep Learning-Based Information Cascade Prediction
    Wang, Zhengang
    Wang, Xin
    Xiong, Fei
    Chen, Hongshu
    SYMMETRY-BASEL, 2024, 16 (11):
  • [28] A survey of deep learning-based visual question answering
    Huang, Tong-yuan
    Yang, Yu-ling
    Yang, Xue-jiao
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2021, 28 (03) : 728 - 746
  • [29] A survey of deep learning-based network anomaly detection
    Donghwoon Kwon
    Hyunjoo Kim
    Jinoh Kim
    Sang C. Suh
    Ikkyun Kim
    Kuinam J. Kim
    Cluster Computing, 2019, 22 : 949 - 961
  • [30] Survey of Deep Learning-Based on Emotion Generation in Conversation
    Zhou, Yutong
    Ma, Zhiqiang
    Xu, Biqi
    Jia, Wenchao
    Lyu, Kai
    Liu, Jia
    Computer Engineering and Applications, 2024, 60 (07) : 13 - 25