Predictors of neurodegeneration differ between cognitively normal and subsequently impaired older adults

被引:36
作者
Armstrong, Nicole M. [1 ]
An, Yang [1 ]
Beason-Held, Lori [1 ]
Doshi, Jimit [2 ]
Erus, Guray [2 ]
Ferrucci, Luigi [3 ]
Davatzikos, Christos [2 ]
Resnick, Susan M. [1 ]
机构
[1] NIA, Lab Behav Neurosci, NIH, Baltimore, MD 21224 USA
[2] Univ Penn, Dept Radiol, Sect Biomed Image Anal, Philadelphia, PA 19104 USA
[3] NIA, Translat Gerontol Branch, Longitudinal Studies Sect, NIH, Baltimore, MD 21224 USA
基金
美国国家卫生研究院;
关键词
Neurodegeneration; Cognitive impairment; Cardiovascular risk factors; VASCULAR RISK-FACTORS; ALZHEIMERS-DISEASE; BRAIN; DEMENTIA; MRI; POPULATION; DECLINE; SEX; AGE; HYPERTENSION;
D O I
10.1016/j.neurobiolaging.2018.10.024
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Effects of Alzheimer's disease (AD) risk factors on brain volume changes may partly explain what happens during the preclinical AD stage in people who develop subsequent cognitive impairment (SI). We investigated predictors of neurodegeneration, measured by MRI-based volume loss, in older adults before diagnosis of cognitive impairment. There were 623 cognitively normal and 65 SI Baltimore Longitudinal Study of Aging participants (age 55-92 years) enrolled in the neuroimaging substudy from 1994 to 2015. Mixed-effects regression was used to assess the associations of AD risk factors (age, APOE e4 carrier status, diabetes, hypertension, obesity, current smoking, and elevated cholesterol) with brain regional volume change among the overall sample and by diagnostic status. Older age, APOE e4 carrier status, hypertension, and HDL cholesterol were predictors of volumetric change. Among SI participants only, hypertension, obesity, and APOE e4 carrier status were associated with greater declines in selected brain regions. SI individuals in the preclinical AD stage are vulnerable to risk factors that have either a protective or null effect in cognitively normal individuals. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:178 / 186
页数:9
相关论文
共 38 条
[1]   Risk profiles for mild cognitive impairment and progression to dementia are gender specific [J].
Artero, S. ;
Ancelin, M-L ;
Portet, F. ;
Dupuy, A. ;
Berr, C. ;
Dartigues, J-F ;
Tzourio, C. ;
Rouaud, O. ;
Poncet, M. ;
Pasquier, F. ;
Auriacombe, S. ;
Touchon, J. ;
Ritchie, K. .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2008, 79 (09) :979-984
[2]   Age, hypertension, and lacunar stroke are the major determinants of the severity of age-related white matter changes [J].
Basile, Anna Maria ;
Pantoni, Leonardo ;
Pracucci, Giovanni ;
Asplund, Kjell ;
Chabriat, Hugues ;
Erkinjuntti, Timo ;
Fazekas, Franz ;
Ferro, Jose M. ;
Hennerici, Michael ;
O'Brien, John ;
Scheltens, Philip ;
Visser, Marieke C. ;
Wahlund, Lars-Olof ;
Waldemar, Gunhild ;
Wallin, Anders ;
Inzitari, Domenico .
CEREBROVASCULAR DISEASES, 2006, 21 (5-6) :315-322
[3]   Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline [J].
Debette, S. ;
Seshadri, S. ;
Beiser, A. ;
Au, R. ;
Himali, J. J. ;
Palumbo, C. ;
Wolf, P. A. ;
DeCarli, C. .
NEUROLOGY, 2011, 77 (05) :461-468
[4]   Qualitative estimates of medial temporal atrophy as a predictor of progression from mild cognitive impairment to dementia [J].
DeCarli, Charles ;
Frisoni, Giovanni B. ;
Clark, Christopher M. ;
Harvey, Danielle ;
Grundman, Michael ;
Petersen, Ronald C. ;
Thal, Leon J. ;
Jin, Shelia ;
Jack, Clifford R., Jr. ;
Scheltens, Philip .
ARCHIVES OF NEUROLOGY, 2007, 64 (01) :108-115
[5]   Automated MRI measures identify individuals with mild cognitive impairment and Alzheimers disease [J].
Desikan, Rahul S. ;
Cabral, Howard J. ;
Hess, Christopher P. ;
Dillon, William P. ;
Glastonbury, Christine M. ;
Weiner, Michael W. ;
Schmansky, Nicholas J. ;
Greve, Douglas N. ;
Salat, David H. ;
Buckner, Randy L. ;
Fischl, Bruce .
BRAIN, 2009, 132 :2048-2057
[6]   MRI cortical thickness biomarker predicts AD-like CSF and cognitive decline in normal adults [J].
Dickerson, Bradford C. ;
Wolk, David A. .
NEUROLOGY, 2012, 78 (02) :84-90
[7]   MUSE: MUlti-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters, and locally optimal atlas selection [J].
Doshi, Jimit ;
Erus, Guray ;
Ou, Yangming ;
Resnick, Susan M. ;
Gur, Ruben C. ;
Gur, Raquel E. ;
Satterthwaite, Theodore D. ;
Furth, Susan ;
Davatzikos, Christos .
NEUROIMAGE, 2016, 127 :186-195
[8]   Longitudinal pattern of regional brain volume change differentiates normal aging from MCI [J].
Driscoll, I. ;
Davatzikos, C. ;
An, Y. ;
Wu, X. ;
Shen, D. ;
Kraut, M. ;
Resnick, S. M. .
NEUROLOGY, 2009, 72 (22) :1906-1913
[9]  
Duron E, 2008, VASC HEALTH RISK MAN, V4, P363
[10]   Longitudinally and inter-site consistent multi-atlas based parcellation of brain anatomy using harmonized atlases [J].
Erus, Guray ;
Doshi, Jimit ;
An, Yang ;
Verganelakis, Dimitris ;
Resnick, Susan M. ;
Davatzikos, Christos .
NEUROIMAGE, 2018, 166 :71-78