Crystal bases and three-dimensional MATHEMATICAL SCRIPT CAPITAL N�=4 Coulomb branches

被引:3
作者
Santilli, Leonardo [1 ]
Tierz, Miguel [1 ,2 ]
机构
[1] Univ Lisbon, Dept Matemat, Fac Ciencias, Grp Fis Matemat, Campo Grande,Edificio C6, P-1749016 Lisbon, Portugal
[2] Univ Complutense Madrid, Dept Anal Matemat & Matemat Aplicada, Plaza Las Ciencias 3, Madrid 28040, Spain
关键词
Supersymmetric Gauge Theory; Field Theories in Lower Dimensions; Differential and Algebraic Geometry; N=4 GAUGE-THEORIES; QUIVER VARIETIES; Q-ANALOG; AFFINE; DUALITY; SLICES; DEFINITION; SYMMETRY; PATHS;
D O I
10.1007/JHEP03(2022)073
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We establish and develop a correspondence between certain crystal bases (Kashiwara crystals) and the Coulomb branch of three-dimensional MATHEMATICAL SCRIPT CAPITAL N � = 4 gauge theories. The result holds for simply-laced, non-simply laced and affine quivers. Two equivalent derivations are given in the non-simply laced case, either by application of the axiomatic rules or by folding a simply-laced quiver. We also study the effect of turning on real masses and the ensuing simplification of the crystal. We present a multitude of explicit examples of the equivalence. Finally, we put forward a correspondence between infinite crystals and Hilbert spaces of theories with isolated vacua.
引用
收藏
页数:62
相关论文
共 94 条
[1]  
Aganagic M., ARXIV210506039
[2]  
Aganagic M., ARXIV200414518
[3]   A polytope calculus for semisimple groups [J].
Anderson, JE .
DUKE MATHEMATICAL JOURNAL, 2003, 116 (03) :567-588
[4]  
[Anonymous], 1990, Infinite -dimensional Lie algebras
[5]  
[Anonymous], 1990, J. Amer. Math. Soc.
[6]  
[Anonymous], ARXIV190307734
[7]   Symplectic singularities [J].
Beauville, A .
INVENTIONES MATHEMATICAE, 2000, 139 (03) :541-549
[8]   Deformation Quantization and Superconformal Symmetry in Three Dimensions [J].
Beem, Christopher ;
Peelaers, Wolfger ;
Rastelli, Leonardo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 354 (01) :345-392
[9]   3D-partition functions on the sphere: exact evaluation and mirror symmetry [J].
Benvenuti, Sergio ;
Pasquetti, Sara .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (05)
[10]   The Hilbert series of the one instanton moduli space [J].
Benvenuti, Sergio ;
Hanany, Amihay ;
Mekareeya, Noppadol .
JOURNAL OF HIGH ENERGY PHYSICS, 2010, (06)