Towards Data Integration for AI in Cancer Research

被引:3
|
作者
Kosvyra, Alexandra [1 ]
Filos, Dimitrios [1 ]
Fotopoulos, Dimitrios [1 ]
Olga, Tsave [1 ]
Chouvarda, Joanna [1 ]
机构
[1] Aristotle Univ Thessaloniki, Sch Med, Thessaloniki, Greece
来源
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC) | 2021年
基金
欧盟地平线“2020”;
关键词
D O I
10.1109/EMBC46164.2021.9629675
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cancer research is increasing relying on data-driven methods and Artificial Intelligence (AI), to increase accuracy and efficiency in decision making. Such methods can solve a variety of clinically relevant problems in cancer diagnosis and treatment, provided that an adequate data availability is ensured. The generation of multicentric data repositories poses a series of integration and harmonization challenges. This work discusses the strategy, solutions and further issues identified along this procedure within the EU project INCISIVE that aims to generate an interoperable pan-European federated repository of medical images and an AI-based toolbox for medical imaging in cancer diagnosis and treatment.
引用
收藏
页码:2054 / 2057
页数:4
相关论文
共 50 条
  • [1] Towards Semantic Integration of Federated Research Data
    Chamanara, Javad
    Kraft, Angelina
    Auer, Sören
    Koepler, Oliver
    Datenbank-Spektrum, 2019, 19 (02) : 87 - 94
  • [2] Towards Intelligent Integration and Sharing of Stem Cell Research Data
    Borziak, Kirill
    Qi, Tianye
    Evangelista, John Erol
    Clarke, Daniel J. B.
    Ma'ayan, Avi
    Finkelstein, Joseph
    IMPORTANCE OF HEALTH INFORMATICS IN PUBLIC HEALTH DURING A PANDEMIC, 2020, 272 : 334 - 337
  • [3] AI and Big Data in Healthcare: Towards a More Comprehensive Research Framework for Multimorbidity
    Majnaric, Ljiljana Trtica
    Babic, Frantisek
    O'Sullivan, Shane
    Holzinger, Andreas
    JOURNAL OF CLINICAL MEDICINE, 2021, 10 (04) : 1 - 23
  • [4] A new approach to data integration with AI to enhance the specificity of prostate cancer diagnosis
    Da Silva, Moreira N. S.
    Vasdev, N.
    Budd, J.
    Yeung, M.
    Giganti, F.
    Davies, L.
    Burn, P. R.
    Hindley, R. G.
    Ibrahim, M.
    Bradley, A. J.
    Maskell, G.
    Andreou, A.
    Liyanage, S.
    Persad, R.
    Aning, J.
    Barrett, T. J.
    Hinton, M. D. B.
    Padhani, A. R.
    Sala, E.
    Rix, A. W.
    Shah, A.
    EUROPEAN UROLOGY, 2024, 85 : S1694 - S1695
  • [5] Data-centric AI and cancer research: constructing a research data access pipeline using XNAT
    Butterworth, Victoria
    Vilic, Dijana
    Al Jazzaf, Haleema
    Young, Thomas
    Palmer, Isabel
    Avgoulea, Tania
    Andriolo, Josh
    Creppy, Carole
    Routledge, Corla
    Misson-Yates, Sarah
    Guerrero-Urbano, Teresa
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S2975 - S2977
  • [6] Research on integration method of AI teaching resources based on learning behaviour data analysis
    Yang, Xiaohua
    INTERNATIONAL JOURNAL OF CONTINUING ENGINEERING EDUCATION AND LIFE-LONG LEARNING, 2020, 30 (04) : 492 - 508
  • [7] Towards microbial data integration
    Larsen, N
    Overbeek, R
    Pramanik, S
    Schmidt, TM
    Selkov, EE
    Strunk, O
    Tiedje, JM
    Urbance, JW
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 1997, 18 (01): : 68 - 72
  • [8] Towards microbial data integration
    Larsen, N.
    Overbeek, R.
    Pramanik, S.
    Schmidt, T.M.
    Selkov, E.E.
    Strunk, O.
    Tiedje, J.M.
    Urbance, J.W.
    Journal of Industrial Microbiology and Biotechnology, 1997, 18 (01): : 68 - 72
  • [9] Cancer research using data-driven AI for clinical applications
    Hamamoto, Ryuji
    CANCER SCIENCE, 2024, 115 : 8 - 8
  • [10] Towards understanding integration in research and research policy
    Luukkonen, Terttu
    Nedeva, Maria
    RESEARCH POLICY, 2010, 39 (05) : 674 - 686