Torsion of injective modules and weakly pro-regular sequences

被引:3
作者
Schenzel, Peter [1 ]
Simon, Anne-Marie [2 ]
机构
[1] Martin Luther Univ Halle Wittenberg, Inst Informat, D-06099 Halle, Saale, Germany
[2] Univ Libre Bruxelles, Serv Geometrie Differentielle, CP 218, Brussels, Belgium
关键词
Injective module; non-Noetherian commutative ring; torsion; weakly pro-regular sequences; COHOMOLOGY;
D O I
10.1080/00927872.2020.1742728
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R a commutative ring, an ideal, I an injective R-module and a multiplicatively closed set. When R is Noetherian it is well-known that the -torsion sub-module the factor module and the localization I-S are again injective R-modules. We investigate these properties in the case of a commutative ring R by means of a notion of relatively--injective R-modules. In particular we get another characterization of weakly pro-regular sequences in terms of relatively injective modules. Also we present examples of non-Noetherian commutative rings R and injective R-modules for which the previous properties do not hold. Moreover, under some weak pro-regularity conditions we obtain results of Mayer-Vietoris type.
引用
收藏
页码:3637 / 3650
页数:14
相关论文
共 14 条
[1]  
Alonso Tarrio J., 2000, LOCAL HOMOLOGY COHOM
[2]  
Brodmann M P, 2013, CAMBRIDGE STUDIES AD, V136
[3]   LOCALIZATION OF INJECTIVE-MODULES [J].
DADE, EC .
JOURNAL OF ALGEBRA, 1981, 69 (02) :416-425
[4]   SELF-INJECTIVE RINGS [J].
FAITH, C .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 77 (02) :157-164
[5]  
Hartshorne R., 1977, Algebraic geometry, Graduate Texts in Mathematics, pxvi
[6]  
Matsumura H., 1986, COMMUTATIVE RING THE, V8
[7]   Injective modules and torsion functors [J].
Pham Hung Quy ;
Rohrer, Fred .
COMMUNICATIONS IN ALGEBRA, 2017, 45 (01) :285-298
[8]  
Rotman J. J., 1979, Pure and Applied Mathematics
[9]   Proregular sequences, local cohomology, and completion [J].
Schenzel, P .
MATHEMATICA SCANDINAVICA, 2003, 92 (02) :161-180
[10]  
Schenzel P., 2018, SPRINGER MONOGRAPHS, Vxix