Theranostic nanosystems for targeted cancer therapy

被引:88
作者
Kang, Homan [1 ,2 ]
Hu, Shuang [1 ,2 ,3 ]
Cho, Mi Hyeon [4 ]
Hong, Suk Ho [4 ]
Choi, Yongdoo [4 ]
Choi, Hak Soo [1 ,2 ]
机构
[1] Massachusetts Gen Hosp, Dept Radiol, Gordon Ctr Med Imaging, Boston, MA 02114 USA
[2] Harvard Med Sch, Boston, MA 02114 USA
[3] Sichuan Univ, West China Sch Med, West China Hosp, Dept Nucl Med, Chengdu 601141, Sichuan, Peoples R China
[4] Natl Canc Ctr, Biomarker Branch, 323 Ilsan Ro, Goyang 10408, Gyeonggi, South Korea
关键词
Targeted therapy; Functional nanoparticle; Organ-specific targeting; Diagnostic imaging; IRON-OXIDE NANOPARTICLES; DRUG-DELIVERY; PHOTODYNAMIC THERAPY; MAGNETIC NANOPARTICLES; POLYMERIC MICELLES; POLYPYRROLE NANOPARTICLES; ENHANCED PERMEABILITY; PHOTOTHERMAL THERAPY; TRIGGERED RELEASE; BREAST-CANCER;
D O I
10.1016/j.nantod.2018.11.001
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanomaterials have revolutionized cancer imaging, diagnosis, and treatment. Multifunctional nanopartides in particular have been designed for targeted cancer therapy by modulating their physicochemical properties to be delivered to the target and activated by internal and/or external stimuli. This review will focus on the fundamental "chemical" design considerations of stimuli-responsive nanosystems to achieve favorable tumor targeting beyond biological barriers and, furthermore, enhance targeted cancer therapy. In addition, we will summarize innovative smart nanosystems responsive to external stimuli (e.g., light, magnetic field, ultrasound, and electric field) and internal stimuli in the tumor microenvironment (e.g., pH, enzyme, redox potential, and oxidative stress). (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:59 / 72
页数:14
相关论文
共 118 条
[1]   Stimuli-induced Pulsatile or Triggered Release Delivery Systems for Bioactive Compounds [J].
Anal, Anil K. .
RECENT PATENTS ON ENDOCRINE METABOLIC & IMMUNE DRUG DISCOVERY, 2007, 1 (01) :83-90
[2]   Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change [J].
Bae, Y ;
Fukushima, S ;
Harada, A ;
Kataoka, K .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (38) :4640-4643
[3]  
Cabral H, 2011, NAT NANOTECHNOL, V6, P815, DOI [10.1038/NNANO.2011.166, 10.1038/nnano.2011.166]
[4]   Ultrasonic controlled morphology transformation of hollow calcium phosphate nanospheres: A smart and biocompatible drug release system [J].
Cai, Yurong ;
Pan, Haihua ;
Xu, Xurong ;
Hu, Qinghong ;
Li, Ling ;
Tang, Ruikang .
CHEMISTRY OF MATERIALS, 2007, 19 (13) :3081-3083
[5]   Rethinking cancer nanotheranostics [J].
Chen, Hongmin ;
Zhang, Weizhong ;
Zhu, Guizhi ;
Xie, Jin ;
Chen, Xiaoyuan .
NATURE REVIEWS MATERIALS, 2017, 2 (07)
[6]   H2O2-Activatable and O2-Evolving Nanoparticles for Highly Efficient and Selective Photodynamic Therapy against Hypoxic Tumor Cells [J].
Chen, Huachao ;
Tian, Jiangwei ;
He, Weijiang ;
Guo, Zijian .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (04) :1539-1547
[7]   Nanoscale theranostics for physical stimulus-responsive cancer therapies [J].
Chen, Qian ;
Ke, Hengte ;
Dai, Zhifei ;
Liu, Zhuang .
BIOMATERIALS, 2015, 73 :214-230
[8]   Development of a reduction-sensitive diselenide-conjugated oligoethylenimine nanoparticulate system as a gene carrier [J].
Cheng, Gang ;
He, Yiyan ;
Xie, Li ;
Nie, Yu ;
He, Bin ;
Zhang, Zhirong ;
Gu, Zhongwei .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2012, 7 :3991-4006
[9]  
Cho MH, 2012, NAT MATER, V11, P1038, DOI [10.1038/NMAT3430, 10.1038/nmat3430]
[10]   A graphene oxide-photosensitizer complex as an enzyme-activatable theranostic agent [J].
Cho, Youngnam ;
Kim, Hyunjin ;
Choi, Yongdoo .
CHEMICAL COMMUNICATIONS, 2013, 49 (12) :1202-1204