Deposition of micro crystalline silicon films using microwave plasma enhanced chemical vapor deposition

被引:3
|
作者
Altmannshofer, Stephan [1 ,2 ]
Miller, Bastian [3 ,4 ]
Holleitner, Alexander W. [3 ,4 ]
Boudaden, Jamila [1 ]
Eisele, Ignaz [1 ,2 ]
Kutter, Christoph [1 ,2 ]
机构
[1] Fraunhofer Res Inst Microsyst & Solid State Techn, D-80686 Munich, Germany
[2] Univ Bundeswehr Munchen, Inst Phys, Fac Elect Engn & Informat Technol, D-85579 Neubiberg, Germany
[3] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany
[4] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany
关键词
Plasma enhanced chemical vapor deposition; Microwave plasma; mu c-Silicon; Spectroscopic ellipsometry; FREQUENCY-GLOW DISCHARGE; C-SI-H; MICROCRYSTALLINE SILICON; THIN-FILMS; HYDROGEN; TEMPERATURE; PRESSURE; DILUTION;
D O I
10.1016/j.tsf.2017.10.031
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A microwave plasma enhanced chemical vapor deposition (microwave PECVD) process has been investigated to deposit micro crystalline silicon films with a high growth rate from silane (SiH4). A three-layer Bruggeman-Effective-Medium-Approximation (BEMA) model was developed to describe the complex structure of the grown films. The model was confirmed by Raman and spectroscopic ellipsometry measurements. In addition the surface evolution was characterized by AFM (Atomic Force Microscopy) and spectroscopic ellipsometry data. Particular emphasis is given to the correlation between the structural film properties and the deposition parameters. Besides chemical reactions, it is shown that ion bombardment plays an important role for the crystallinity of the grown silicon films. In the presence of ions, hydrogen radicals are able to etch silicon, which significantly improves the crystallinity of the deposited films. If just radicals are present, the deposited films become amorphous.
引用
收藏
页码:180 / 186
页数:7
相关论文
共 50 条
  • [21] High rate deposition of microcrystalline silicon using conventional plasma-enhanced chemical vapor deposition
    Guo, LH
    Kondo, M
    Fukawa, M
    Saitoh, K
    Matsuda, A
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1998, 37 (10A): : L1116 - L1118
  • [22] Comparative Study of Furnace and Flash Lamp Annealed Silicon Thin Films Grown by Plasma Enhanced Chemical Vapor Deposition
    Shrestha, Maheshwar
    Wang, Keliang
    Zheng, Bocong
    Mokrzycki, Laura
    Fan, Qi Hua
    COATINGS, 2018, 8 (03):
  • [23] Gas-phase kinetics in atmospheric-pressure plasma-enhanced chemical vapor deposition of silicon films
    Kakiuchi, Hiroaki
    Ohmi, Hiromasa
    Yasutake, Kiyoshi
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (05)
  • [24] Determination of photocatalytic activity in amorphous and crystalline titanium oxide films prepared using plasma-enhanced chemical vapor deposition
    Wu, Cheng-Yang
    Chiang, Bo-Sheng
    Chang, Springfield
    Liu, Day-Shan
    APPLIED SURFACE SCIENCE, 2011, 257 (06) : 1893 - 1897
  • [25] Practical silicon deposition rules derived from silane monitoring during plasma-enhanced chemical vapor deposition
    Bartlome, Richard
    De Wolf, Stefaan
    Demaurex, Benedicte
    Ballif, Christophe
    Amanatides, Eleftherios
    Mataras, Dimitrios
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (20)
  • [26] On the Plasma Chemistry During Plasma Enhanced Chemical Vapor Deposition of Microcrystalline Silicon Oxides
    Gabriel, Onno
    Kirner, Simon
    Klingsporn, Max
    Friedrich, Felice
    Stannowski, Bernd
    Schlatmann, Rutger
    PLASMA PROCESSES AND POLYMERS, 2015, 12 (01) : 82 - 91
  • [27] Deposition of silicon nitride films using chemical vapor deposition for photovoltaic applications
    Jhansirani, K.
    Dubey, R. S.
    More, M. A.
    Singh, Shyam
    RESULTS IN PHYSICS, 2016, 6 : 1059 - 1063
  • [28] Plasma-Enhanced Chemical Vapor Deposition of Silicon Films at Low Pressure in GEC Reference Cell
    Siari, K.
    Rebiai, S.
    Bahouh, H.
    Bouanaka, F.
    PLASMA PHYSICS REPORTS, 2020, 46 (06) : 667 - 674
  • [29] Deposition of controllable preferred orientation silicon films on glass by inductively coupled plasma chemical vapor deposition
    Li, Junshuai
    Wang, Jinxiao
    Yin, Min
    Gao, Pingqi
    He, Deyan
    Chen, Qiang
    Li, Yali
    Shirai, Hajime
    JOURNAL OF APPLIED PHYSICS, 2008, 103 (04)
  • [30] Chemical composition and properties of films produced from hexamethyldisilazane by plasma-enhanced chemical vapor deposition
    Shayapov, V. R.
    Rumyantsev, Yu. M.
    Plyusnin, P. E.
    HIGH ENERGY CHEMISTRY, 2016, 50 (03) : 213 - 218