A discriminative dynamic framework for facial expression recognition in video sequences

被引:8
作者
Fan, Xijian [1 ]
Yang, Xubing [1 ]
Ye, Qiaolin [1 ]
Yang, Yin [1 ,2 ]
机构
[1] Nanjing Forestry Univ, Dept Comp Sci, Nanjing, Jiangsu, Peoples R China
[2] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
基金
中国国家自然科学基金;
关键词
Histogram of gradients; Facial expression; Feature extraction; AUTOMATIC-ANALYSIS; FACE;
D O I
10.1016/j.jvcir.2018.09.011
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Facial expression involves a dynamic process, leading to the variation of different facial components over time. Thus, dynamic descriptors are essential for recognising facial expressions. In this paper, we extend the spatial pyramid histogram of gradients to spatio-temporal domain to give 3-dimensional facial features. To enhance the spatial information, we divide the whole face region into a group of smaller local regions to extract local 3D features, and a weighting strategy based on fisher separation criterion is proposed to enhance the discrimination ability of local features. A multi-class classifier based on support vector machine is applied for recognising facial expressions. Experiments on the CK+ and MMI datasets using leave-one-out cross validation scheme show that the proposed framework perform better than using the descriptor of simple concatenation. Compared with state-of-the-art methods, the proposed framework demonstrates a superior performance. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:182 / 187
页数:6
相关论文
共 34 条
[1]   Survey on RGB, 3D, Thermal, and Multimodal Approaches for Facial Expression Recognition: History, Trends, and Affect-Related Applications [J].
Adrian Corneanu, Ciprian ;
Oliu Simon, Marc ;
Cohn, Jeffrey F. ;
Escalera Guerrero, Sergio .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (08) :1548-1568
[2]  
[Anonymous], 2005, PROC CVPR IEEE
[3]  
[Anonymous], 2010, CHAPTER AFFECTIVE CO
[4]  
[Anonymous], 2007, P 6 ACM INT C IM VID, DOI [DOI 10.1145/1282280.1282340, 10.1145/1282280.1282340]
[5]  
[Anonymous], P BRIT C MACH VIS
[6]   Constrained Local Neural Fields for robust facial landmark detection in the wild [J].
Baltrusaitis, Tadas ;
Robinson, Peter ;
Morency, Louis-Philippe .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2013, :354-361
[7]  
Bartlett MS, 2005, PROC CVPR IEEE, P568
[8]   Feature-point tracking by optical flow discriminates subtle differences in facial expression [J].
Cohn, JF ;
Zlochower, AJ ;
Lien, JJ ;
Kanade, T .
AUTOMATIC FACE AND GESTURE RECOGNITION - THIRD IEEE INTERNATIONAL CONFERENCE PROCEEDINGS, 1998, :396-401
[9]  
Cornelis C, 2007, LECT NOTES ARTIF INT, V4482, P87
[10]   Face recognition using Histograms of Oriented Gradients [J].
Deniz, O. ;
Bueno, G. ;
Salido, J. ;
De la Torre, F. .
PATTERN RECOGNITION LETTERS, 2011, 32 (12) :1598-1603