Integrating transcriptional activity in genome-scale models of metabolism

被引:17
作者
Banos, Daniel Trejo [1 ]
Trebulle, Pauline [1 ,2 ]
Elati, Mohamed [1 ,3 ]
机构
[1] UEVE, CNRS, CEA, Lab iSSB,UMR Genom Metabol 8030, Genopole Campus 1,5 Rue Henri Desbrueres, F-91030 Evry, France
[2] Univ Paris Saclay, AgroParisTech, INRA, Micalis Inst, F-78350 Jouy En Josas, France
[3] Univ Lille, CNRS, CRIStAL Ctr Rech Informat Signal & Automat Lille, Cent Lille,UMR 9189, F-59000 Lille, France
关键词
Inference and interrogation of regulatory network; Metabolic modeling; Saccharomyces cerevisiae; REGULATORY NETWORKS; ESCHERICHIA-COLI; GENE-EXPRESSION; RECONSTRUCTION; DATABASE;
D O I
10.1186/s12918-017-0507-0
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Genome-scale metabolic models provide an opportunity for rational approaches to studies of the different reactions taking place inside the cell. The integration of these models with gene regulatory networks is a hot topic in systems biology. The methods developed to date focus mostly on resolving the metabolic elements and use fairly straightforward approaches to assess the impact of genome expression on the metabolic phenotype. Results: We present here a method for integrating the reverse engineering of gene regulatory networks into these metabolic models. We applied our method to a high-dimensional gene expression data set to infer a background gene regulatory network. We then compared the resulting phenotype simulations with those obtained by other relevant methods. Conclusions: Our method outperformed the other approaches tested and was more robust to noise. We also illustrate the utility of this method for studies of a complex biological phenomenon, the diauxic shift in yeast.
引用
收藏
页数:10
相关论文
共 39 条
[1]  
Anonymous, 2006, P1
[2]  
[Anonymous], 1975, OPTIMIZATION TECHNIQ
[3]   Context-specific metabolic networks are consistent with experiments [J].
Becker, Scott A. ;
Palsson, Bernhard O. .
PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (05)
[4]   Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures [J].
Brauer, MJ ;
Saldanha, AJ ;
Dolinski, K ;
Botstein, D .
MOLECULAR BIOLOGY OF THE CELL, 2005, 16 (05) :2503-2517
[5]   A Global Protein Kinase and Phosphatase Interaction Network in Yeast [J].
Breitkreutz, Ashton ;
Choi, Hyungwon ;
Sharom, Jeffrey R. ;
Boucher, Lorrie ;
Neduva, Victor ;
Larsen, Brett ;
Lin, Zhen-Yuan ;
Breitkreutz, Bobby-Joe ;
Stark, Chris ;
Liu, Guomin ;
Ahn, Jessica ;
Dewar-Darch, Danielle ;
Reguly, Teresa ;
Tang, Xiaojing ;
Almeida, Ricardo ;
Qin, Zhaohui Steve ;
Pawson, Tony ;
Gingras, Anne-Claude ;
Nesvizhskii, Alexey I. ;
Tyers, Mike .
SCIENCE, 2010, 328 (5981) :1043-1046
[6]   Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis [J].
Chandrasekaran, Sriram ;
Price, Nathan D. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (41) :17845-17850
[7]   Hybrid Method Inference for the Construction of Cooperative Regulatory Network in Human [J].
Chebil, I. ;
Nicolle, R. ;
Santini, G. ;
Rouveirol, C. ;
Elati, M. .
IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2014, 13 (02) :97-103
[8]   Interpreting Expression Data with Metabolic Flux Models: Predicting Mycobacterium tuberculosis Mycolic Acid Production [J].
Colijn, Caroline ;
Brandes, Aaron ;
Zucker, Jeremy ;
Lun, Desmond S. ;
Weiner, Brian ;
Farhat, Maha R. ;
Cheng, Tan-Yun ;
Moody, D. Branch ;
Murray, Megan ;
Galagan, James E. .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (08)
[9]   Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli [J].
Covert, Markus W. ;
Xiao, Nan ;
Chen, Tiffany J. ;
Karr, Jonathan R. .
BIOINFORMATICS, 2008, 24 (18) :2044-2050
[10]   Physiological and transcriptional characterization of Saccharomyces cerevisiae engineered for production of fatty acid ethyl esters [J].
de Jong, Bouke Wim ;
Siewers, Verena ;
Nielsen, Jens .
FEMS YEAST RESEARCH, 2016, 16 (01)