National Satellite-Based Land-Use Regression: NO2 in the United States

被引:174
作者
Novotny, Eric V. [1 ]
Bechle, Matthew J. [1 ]
Millet, Dylan B. [1 ]
Marshall, Julian D. [1 ]
机构
[1] Univ Minnesota, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
AMBIENT NITROGEN-DIOXIDE; AIR-POLLUTION; FINE; EXPOSURE; MODELS; VARIABILITY; MORTALITY; DISTANCE; OXIDES; SCALE;
D O I
10.1021/es103578x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Land-use regression models (LUR) estimate outdoor air pollution at high spatial resolution. Previous LURs have generally focused on individual cities. Here, we present an LUR for year-2006 ground-level NO2 concentrations throughout the contiguous United States. Our approach employs ground- and satellite-based NO2 measurements, and geographic characteristics such as population density, land-use (based on satellite data), and distance to major and minor roads. The results provide reliable estimates of ambient NO2 air pollution as measured by the U.S. EPA (R-2 = 0.78; bias = 22%) at a spatial resolution (similar to 30 m) that is capable of capturing within-urban and near-roadway gradients in NO2. We explore several aspects of temporal (time-of-day; day-of-week; season) and spatial (urban versus rural; U.S. region) variability in the model. Results are robust to spatial autocorrelation, to selection of an alternative input data set, and to minor perturbations in input data (using 90% of the data to predict the remaining 10%). The modeled population-weighted (unweighted) mean outdoor concentration in the United States is 10.7 (4.8) ppb. Our approach could be implemented in other areas of the world given sufficient road network and pollutant monitoring data. To facilitate future use and evaluation of the results, concentration estimates for the similar to 8 million U.S. Census blocks in the contiguous United States are publicly available via the Supporting Information.
引用
收藏
页码:4407 / 4414
页数:8
相关论文
共 48 条
[1]   Fine Particulate Matter Air Pollution, Proximity to Traffic, and Aortic Atherosclerosis [J].
Allen, Ryan W. ;
Criqui, Michael H. ;
Roux, Ana V. Diez ;
Allison, Matthew ;
Shea, Steven ;
Detrano, Robert ;
Sheppard, Lianne ;
Wong, Nathan D. ;
Stukovsky, Karen Hinckley ;
Kaufman, Joel D. .
EPIDEMIOLOGY, 2009, 20 (02) :254-264
[2]   LOCAL INDICATORS OF SPATIAL ASSOCIATION - LISA [J].
ANSELIN, L .
GEOGRAPHICAL ANALYSIS, 1995, 27 (02) :93-115
[3]  
Bechle M. J., 2011, ENV SCI TEC IN PRESS
[4]   Mapping of background air pollution at a fine spatial scale across the European Union [J].
Beelen, Rob ;
Hoek, Gerard ;
Pebesma, Edzer ;
Vienneau, Danielle ;
de Hoogh, Kees ;
Briggs, David J. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2009, 407 (06) :1852-1867
[5]   Comparison of the performances of land use regression modelling and dispersion modelling in estimating small-scale variations in long-term air pollution concentrations in a Dutch urban area [J].
Beelen, Rob ;
Voogt, Marita ;
Duyzer, Jan ;
Zandveld, Peter ;
Hoek, Gerard .
ATMOSPHERIC ENVIRONMENT, 2010, 44 (36) :4614-4621
[6]   Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation [J].
Bey, I ;
Jacob, DJ ;
Yantosca, RM ;
Logan, JA ;
Field, BD ;
Fiore, AM ;
Li, QB ;
Liu, HGY ;
Mickley, LJ ;
Schultz, MG .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D19) :23073-23095
[7]   Mapping urban air pollution using GIS: a regression-based approach [J].
Briggs, DJ ;
Collins, S ;
Elliott, P ;
Fischer, P ;
Kingham, S ;
Lebret, E ;
Pryl, K ;
VAnReeuwijk, H ;
Smallbone, K ;
VanderVeen, A .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 1997, 11 (07) :699-718
[8]  
Center for International Earth Science Information Network (CIESIN), 2005, POP DENT GRIDS
[9]  
Cook R., 2011, ATMOS ENV IN PRESS
[10]   A new global 1-km dataset of percentage tree cover derived from remote sensing [J].
Defries, RS ;
Hansen, MC ;
Townshend, JRG ;
Janetos, AC ;
Loveland, TR .
GLOBAL CHANGE BIOLOGY, 2000, 6 (02) :247-254