On controlling the P2-O2 phase transition by optimal Ti-substitution on Ni-site in P2-type Na0.67Ni0.33Mn0.67O2 (NNMO) cathode for Na-ion batteries

被引:66
作者
Pahari, Debanjana [1 ]
Puravankara, Sreeraj [1 ]
机构
[1] Indian Inst Technol Kharagpur, Sch Energy Sci & Engn, Kharagpur 721302, W Bengal, India
关键词
Sodium-ion battery; Cathode materials; Transition metal oxides; Titanium substitution; P2-O2; transition; SODIUM; PERFORMANCE;
D O I
10.1016/j.jpowsour.2020.227957
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Novel electrode materials of P2-type layered oxides, Na-0.67 Ni0.33-xTixMn0.67O2 (x = 0, 0.08 and 0.16) are synthesized via solid state synthesis methods and electrochemically characterized as cathode materials for rechargeable non-aqueous sodium ion batteries. Na0.67Ni0.17Ti0.16Mn0.67O2 electrodes can deliver initial discharge capacity of 167 mAhg(-1 )at 0.1C rate with an average voltage of 3.7 V. Na0.67Ni0.25Ti0.08Mn0.67O2 electrodes lose only 12% of its initial capacity after 50 cycles when cycled to an upper cut-off voltage of 4.3 V. Controlling the P2-O2 transition at higher voltages through either optimized cut-off voltages or substitution is critical for improving the capacity retention. A complete reversible P2-OP4 transition occur only in optimally substituted sample, Na0.67Ni0.25Ti0.08Mn0.67O2 where as P2-O2 transition reemerges with higher amount of substitution in Na0.67Ni0.17Ti0.16Mn0.67O2.
引用
收藏
页数:7
相关论文
共 34 条
[1]   Improving the electrochemical performance of layered cathode oxide for sodium-ion batteries by optimizing the titanium content [J].
Bao, Shuo ;
Luo, Shao-hua ;
Wang, Zhi-yuan ;
Yan, Sheng-xue ;
Wang, Qing .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 544 :164-171
[2]   Novel P2-type concentration-gradient Na0.67Ni0.167Co0.167Mn0.67O2 modified by Mn-rich surface as cathode material for sodium ion batteries [J].
Bao, Shuo ;
Luo, Shao-hua ;
Wang, Zhi-yuan ;
Yan, Sheng-xue ;
Wang, Qing ;
Li, Jia-yu .
JOURNAL OF POWER SOURCES, 2018, 396 :404-411
[3]   Na0.67Mn1-xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries [J].
Billaud, Juliette ;
Singh, Gurpreet ;
Armstrong, A. Robert ;
Gonzalo, Elena ;
Roddatis, Vladimir ;
Armand, Michel ;
Rojob, Teofilo ;
Bruce, Peter G. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (04) :1387-1391
[4]   Enhanced cycle stability of Na0.9Ni0.45Mn0.55O2 through tailoring O3/P2 hybrid structures for sodium-ion batteries [J].
Chen, Jie ;
Li, Lingjun ;
Wu, Ling ;
Yao, Qi ;
Yang, Huiping ;
Liu, Zengsheng ;
Xia, Lingfeng ;
Chen, Zhaoyong ;
Duan, Junfei ;
Zhong, Shengkui .
JOURNAL OF POWER SOURCES, 2018, 406 :110-117
[5]   Review-Manganese-Based P2-Type Transition Metal Oxides as Sodium-Ion Battery Cathode Materials [J].
Clement, Raphaele J. ;
Bruce, Peter G. ;
Grey, Clare P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (14) :A2589-A2604
[6]   STRUCTURAL CLASSIFICATION AND PROPERTIES OF THE LAYERED OXIDES [J].
DELMAS, C ;
FOUASSIER, C ;
HAGENMULLER, P .
PHYSICA B & C, 1980, 99 (1-4) :81-85
[7]   Sodium-ion batteries: New opportunities beyond energy storage by lithium [J].
Eftekhari, Ali ;
Kim, Dong-Won .
JOURNAL OF POWER SOURCES, 2018, 395 :336-348
[8]   A high energy-density P2-Na2/3[Ni0.3Co0.1Mn0.6]O2 cathode with mitigated P2-O2 transition for sodium-ion batteries [J].
Hou, Peiyu ;
Sun, Yanyun ;
Li, Feng ;
Sun, Yiming ;
Deng, Xiaolong ;
Zhang, Hongzhou ;
Xu, Xijin ;
Zhang, Lianqi .
NANOSCALE, 2019, 11 (06) :2787-2794
[9]   Sodium-ion batteries: present and future [J].
Hwang, Jang-Yeon ;
Myung, Seung-Taek ;
Sun, Yang-Kook .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (12) :3529-3614
[10]   Advancement of technology towards developing Na-ion batteries [J].
Jamesh, Mohammed Ibrahim ;
Prakash, A. S. .
JOURNAL OF POWER SOURCES, 2018, 378 :268-300