Well-posedness of a nonlinear evolution equation arising in growing cell population

被引:7
作者
Garcia-Falset, Jesus [1 ]
机构
[1] Univ Valencia, Dept Anal Matemat, Fac Matemat, E-46100 Valencia, Spain
关键词
accretive operators; cell population dynamics; mild solutions; integral solutions; MODEL;
D O I
10.1002/mma.1473
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that a nonlinear evolution equation which comes from a model of an age-structured cell population endowed with general reproduction laws is well-posed. Copyright (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:1658 / 1666
页数:9
相关论文
共 16 条
[1]  
Barbu V, 2010, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-4419-5542-5
[2]  
BENILAN PH., 1972, These de doctorat d'Etat
[3]   A Rotenberg's model with maturation velocity nil [J].
Boulanouar, M .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (04) :443-446
[4]   A Model of Proliferating Cell Populations with Infinite Cell Cycle Length: Semigroup Existence [J].
Boulanouar, M. .
ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (03) :949-971
[5]   A mathematical study in the theory of dynamic population [J].
Boulanouar, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 255 (01) :230-259
[7]   INTEGRAL SOLUTIONS TO A CLASS OF NONLOCAL EVOLUTION EQUATIONS [J].
Garcia-Falset, Jesus ;
Reich, Simeon .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2010, 12 (06) :1031-1054
[8]   Existence of fixed points for the sum of two operators [J].
Garcia-Falset, Jesus .
MATHEMATISCHE NACHRICHTEN, 2010, 283 (12) :1736-1757
[9]  
GURTIN ME, 1983, ARCH RATIONAL MECH A, V82, P13
[10]   A nonlinear problem arising in the theory of growing cell populations [J].
Jeribi, A .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2002, 3 (01) :85-105