On the decay properties of solutions to a class of Schrodinger equations

被引:39
作者
Dawson, L. [1 ]
McGahagan, H. [2 ]
Ponce, G. [2 ]
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[2] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
关键词
D O I
10.1090/S0002-9939-08-09355-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a local in time, exponentially decaying solution of the one-dimensional variable coefficient Schrodinger equation by solving a nonstandard boundary value problem. A main ingredient in the proof is a new commutator estimate involving the projections P-+/- onto the positive and negative frequencies.
引用
收藏
页码:2081 / 2090
页数:10
相关论文
共 9 条
[2]   Microlocal dispersive smoothing for the Schrodinger equation [J].
Craig, W ;
Kappeler, T ;
Strauss, W .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1995, 48 (08) :769-860
[3]   Smoothing effects for Schrodinger evolution equation and global behavior of geodesic flow [J].
Doi, S .
MATHEMATISCHE ANNALEN, 2000, 318 (02) :355-389
[4]   On uniqueness properties of solutions of Schrodinger equations [J].
Escauriaza, L. ;
Kenig, C. E. ;
Ponce, G. ;
Vega, L. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (12) :1811-1823
[5]  
Kato T., 1983, ADV MATH S, V8, P93
[6]   WELL-POSEDNESS AND SCATTERING RESULTS FOR THE GENERALIZED KORTEWEG-DEVRIES EQUATION VIA THE CONTRACTION PRINCIPLE [J].
KENIG, CE ;
PONCE, G ;
VEGA, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (04) :527-620
[7]  
KENIG CE, 2002, COMMUN PUR APPL MATH, V60, P1247
[8]  
Mizohata S., 1985, NOTES REPORTS MATH S, V3
[9]   Well-posedness results for the generalized Benjamin-Ono equation with arbitrary large initial data [J].
Molinet, L ;
Ribaud, F .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (70) :3757-3795