Infinitely many knots whose Whitehead doubles have the trivial first coefficient Kauffman polynomial

被引:0
作者
Takioka, Hideo [1 ]
机构
[1] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
关键词
Kauffman polynomial; f(1)-polynomial; cable knot; Whitehead double; INVARIANT;
D O I
10.1142/S0218216521500541
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We recall a skein relation of the first coefficient Kauffman polynomial for knots. By using the skein relation, we show that there exist infinitely many knots whose Whitehead doubles have the trivial first coefficient Kauffman polynomial.
引用
收藏
页数:14
相关论文
共 17 条
[1]   Topological invariants of knots and links [J].
Alexander, J. W. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1928, 30 (1-4) :275-306
[2]  
[Anonymous], KNOT PROGRAM
[3]  
[Anonymous], 1994, KOBE J MATH
[4]  
[Anonymous], 1976, Knots and Links
[5]   A POLYNOMIAL INVARIANT FOR UNORIENTED KNOTS AND LINKS [J].
BRANDT, RD ;
LICKORISH, WBR ;
MILLETT, KC .
INVENTIONES MATHEMATICAE, 1986, 84 (03) :563-573
[6]  
Conway J. H., 1970, Computational Problems in Abstract Algebra, P329
[7]   A NEW POLYNOMIAL INVARIANT OF KNOTS AND LINKS [J].
FREYD, P ;
YETTER, D ;
HOSTE, J ;
LICKORISH, WBR ;
MILLETT, K ;
OCNEANU, A .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (02) :239-246
[8]  
Ho C.-F., 1986, POLYNOMIAL INVARIANT
[9]   A POLYNOMIAL INVARIANT FOR KNOTS VIA VONNEUMANN-ALGEBRAS [J].
JONES, VFR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (01) :103-111
[10]  
Kanenobu T, 2006, KYUNGPOOK MATH J, V46, P509