CURRENT AUTOMATIC METHODS FOR KNEE CARTILAGE SEGMENTATION: A REVIEW

被引:0
作者
Vilimek, Dominik [1 ]
Kubicek, Jan [1 ]
Penhaker, Marek [1 ]
Oczka, David [1 ]
Augustynek, Martin [1 ]
Cerny, Martin [1 ]
机构
[1] VSB Tech Univ Ostrava, FEECS, K450,17 Listopadu 15, Ostrava 70833, Czech Republic
来源
2019 8TH EUROPEAN WORKSHOP ON VISUAL INFORMATION PROCESSING (EUVIP 2019) | 2019年
关键词
Image segmentation; cartilage; modeling; osteoarthritis; MRI; SURFACES;
D O I
10.1109/euvip47703.2019.8946132
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Knee cartilage segmentation has been challenging task for many years. This task is usually connected with two major issues. First object of interest is automatic detection and extraction of knee cartilage shape. Second important issue is detection of osteoarthritis, especially, in early stages. This early deterioration is badly recognizable from native images segmentation significantly contributes to precise localization, detection and extraction of early osteoarthritis. Generally, the knee cartilage automatic segmentation and extraction can be performed by various approaches including edge tracking, intensity-based methods, supervised learning, energy minimization, statistical methods and multiregional segmentation methods. Using of particular segmentation method depends on a compromise which user is willing to accept with respect to robustness, segmentation purpose, computational time, accuracy and level of user interaction. This review is mainly focused on fully automatic segmentation methods bringing the recent informations about modeling of cartilage structure via segmentation approaches.
引用
收藏
页码:117 / 122
页数:6
相关论文
共 25 条
[1]   Optimized region finding and edge detection of knee cartilage surfaces from magnetic resonance images [J].
Angelini, ED ;
Ciaccio, EJ .
ANNALS OF BIOMEDICAL ENGINEERING, 2003, 31 (03) :336-345
[2]   Inter-subject comparison of MRI knee cartilage thickness [J].
Carballido-Gamio, Julio ;
Bauer, Jan S. ;
Stahl, Robert ;
Lee, Keh-Yang ;
Krause, Stefanie ;
Link, Thomas M. ;
Majumdar, Sharmila .
MEDICAL IMAGE ANALYSIS, 2008, 12 (02) :120-135
[3]   Is Magnetic Resonance Imaging Reliable in Predicting Clinical Outcome After Articular Cartilage Repair of the Knee? A Systematic Review and Meta-analysis [J].
de Windt, Tommy S. ;
Welsch, Goetz H. ;
Brittberg, Mats ;
Vonk, Lucienne A. ;
Marlovits, Stefan ;
Trattnig, Siegfried ;
Saris, Daniel B. F. .
AMERICAN JOURNAL OF SPORTS MEDICINE, 2013, 41 (07) :1695-1702
[4]   Segmenting articular cartilage automatically using a voxel classification approach [J].
Folkesson, Jenny ;
Dam, Erik B. ;
Olsen, Ole F. ;
Pettersen, Paola C. ;
Christiansen, Claus .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2007, 26 (01) :106-115
[5]   Automatic Segmentation and Quantitative Analysis of the Articular Cartilages From Magnetic Resonance Images of the Knee [J].
Fripp, Jurgen ;
Crozier, Stuart ;
Warfield, Simon K. ;
Ourselin, Sebastien .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (01) :55-64
[6]   Multinuclear MR and Multilevel Data Processing: An Insight into Morphologic Assessment of In Vivo Knee Articular Cartilage [J].
Hani, Ahmad Fadzil Mohd ;
Kumar, Dileep ;
Malik, Aamir Saeed ;
Walter, Nicolas ;
Razak, Ruslan ;
Kiflie, Azman .
ACADEMIC RADIOLOGY, 2015, 22 (01) :93-104
[7]   Contrast enhancement of ultrasound imaging of the knee joint cartilage for early detection of knee osteoarthritis [J].
Hossain, Md Belayet ;
Lai, Khin Wee ;
Pingguan-Murphy, Belinda ;
Hum, Yan Chai ;
Salim, Maheza Irna Mohd ;
Liew, Yih Miin .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2014, 13 :157-167
[8]   Quantification of cartilage loss in local regions of knee joints using semi-automated segmentation software: analysis of longitudinal data from the Osteoarthritis Initiative (OAI) [J].
Iranpour-Boroujeni, T. ;
Watanabe, A. ;
Bashtar, R. ;
Yoshioka, H. ;
Duryea, J. .
OSTEOARTHRITIS AND CARTILAGE, 2011, 19 (03) :309-314
[9]   A Hybrid Technique for Thickness-Map Visualization of the Hip Cartilages in MRI [J].
Khanmohammadi, Mahdieh ;
Zoroofi, Reza Aghaiezadeh ;
Nishii, Takashi ;
Tanaka, Hisashi ;
Sato, Yoshinobu .
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2009, E92D (11) :2253-2263
[10]   Segmentation of Articular Cartilage and Early Osteoarthritis based on the Fuzzy Soft Thresholding Approach Driven by Modified Evolutionary ABC Optimization and Local Statistical Aggregation [J].
Kubicek, Jan ;
Penhaker, Marek ;
Augustynek, Martin ;
Cerny, Martin ;
Oczka, David .
SYMMETRY-BASEL, 2019, 11 (07)