Cosmological Malmquist bias in the Hubble diagram at high redshifts

被引:0
作者
Teerikorpi, P [1 ]
机构
[1] Univ Turku, Tuorla Observ, FIN-21500 Piikkio, Finland
关键词
galaxies : distances and redshifts; distance scale;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Malmquist bias in luminosity distances for gaussian standard candles is discussed within cosmological models where the Euclidean r(3)-law for volumes and r(-2)-law for fluxes is not valid. Furthermore, the influence of K-corrections and luminosity evolution are analyzed. It is noted that the usual way of comparing theoretical predictions and data points in the Hubble diagram (log z vs. m) should be modified in view of the cosmological Malmquist bias. When the space distribution of galaxies is uniform, the classical Malmquist bias is constant at all apparent magnitudes, which is no more generally true within uniform cosmological models. Especially, calculations are made in Friedmann models for standard candles with different gaussian dispersions a around average absolute magnitude M-0. The usual log z vs. m (or Mattig) relations an deformed by amounts depending on the Friedmann model itself, on sigma, and on the apparent magnitude of the standard candle. The implications on estimations of q are shown to be significant when sigma greater than or equal to 0.3 mag. It is concluded that the cosmological Malmquist bias is a necessary part of the theory of gaussian standard candles at high redshifts. It is also emphasized that one should always consider two complementary aspects of the Hubble diagram as a cosmological test, i.e. the log z vs. m and m vs. log z approaches, the first one influenced by the bias here discussed, while the second one is plagued by the magnitude limit (Malmquist bias of the 2nd kind). For example, with sigma = 0.5 mag, in the case of bolometric magnitude, the traditional log z vs. m procedure in the brighter part ( (z) less than about 1.5) of the Hubble diagram, would make one believe that g(0) = 0.25 when it actually is 0.5. Without evolution, bur in the presence of K-effect typical for V-band and E-galaxies, one would derive g(0) approximate to 0.1 in the case of g(0) = 1.0 when the K-effect is simply put into the zero-dispersion theoretical curve. With a good standard candle having sigma = 0.3, these results would change to g(0) = 0.4 (instead of 0.5) and = 0.5 (instead of 1.0). We also discuss the bias in angular size distance, which is shown to work in a different sense than the bias in luminosity distance, and the deviation from the classical bias is large already well below the distance maximum in Friedmann models.
引用
收藏
页码:647 / 657
页数:11
相关论文
共 50 条
  • [11] New improved photometric redshifts of galaxies in the Hubble Deep Field
    Furusawa, H
    Shimasaku, K
    Doi, M
    Okamura, S
    ASTROPHYSICAL JOURNAL, 2000, 534 (02) : 624 - 635
  • [12] FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS
    Kessler, Richard
    Becker, Andrew C.
    Cinabro, David
    Vanderplas, Jake
    Frieman, Joshua A.
    Marriner, John
    Davis, Tamara M.
    Dilday, Benjamin
    Holtzman, Jon
    Jha, Saurabh W.
    Lampeitl, Hubert
    Sako, Masao
    Smith, Mathew
    Zheng, Chen
    Nichol, Robert C.
    Bassett, Bruce
    Bender, Ralf
    Depoy, Darren L.
    Doi, Mamoru
    Elson, Ed
    Filippenko, Alexei V.
    Foley, Ryan J.
    Garnavich, Peter M.
    Hopp, Ulrich
    Ihara, Yutaka
    Ketzeback, William
    Kollatschny, W.
    Konishi, Kohki
    Marshall, Jennifer L.
    McMillan, Russet J.
    Miknaitis, Gajus
    Morokuma, Tomoki
    Mortsell, Edvard
    Pan, Kaike
    Prieto, Jose Luis
    Richmond, Michael W.
    Riess, Adam G.
    Romani, Roger
    Schneider, Donald P.
    Sollerman, Jesper
    Takanashi, Naohiro
    Tokita, Kouichi
    van der Heyden, Kurt
    Wheeler, J. C.
    Yasuda, Naoki
    York, Donald
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2009, 185 (01) : 32 - 84
  • [13] Malmquist bias and the distance to the Virgo cluster
    Gonzalez, AH
    Faber, SM
    ASTROPHYSICAL JOURNAL, 1997, 485 (01) : 80 - 86
  • [14] Photometric Redshifts in the Hawaii-Hubble Deep Field-North
    Yang, G.
    Xue, Y. Q.
    Luo, B.
    Brandt, W. N.
    Alexander, D. M.
    Bauer, F. E.
    Cui, W.
    Kong, X.
    Lehmer, B. D.
    Wang, J. -X.
    Wu, X. -B.
    Yuan, F.
    Yuan, Y. -F.
    Zhou, H. Y.
    GALAXIES AT HIGH REDSHIFT AND THEIR EVOLUTION OVER COSMIC TIME, 2016, 11 (S319): : 56 - 56
  • [15] An updated Type II supernova Hubble diagram
    Gall, E. E. E.
    Kotak, R.
    Leibundgut, B.
    Taubenberger, S.
    Hillebrandt, W.
    Kromer, M.
    Burgett, W. S.
    Chambers, K.
    Flewelling, H.
    Huber, M. E.
    Kaiser, N.
    Kudritzki, R. P.
    Magnier, E. A.
    Metcalfe, N.
    Smith, K.
    Tonry, J. L.
    Wainscoat, R. J.
    Waters, C.
    ASTRONOMY & ASTROPHYSICS, 2018, 611
  • [16] Extending the Hubble diagram by gamma ray bursts
    Izzo, L.
    Capozziello, S.
    Covone, G.
    Capaccioli, M.
    ASTRONOMY & ASTROPHYSICS, 2009, 508 (01) : 63 - 67
  • [17] Systematics in the gamma-ray burst Hubble diagram
    Cardone, V. F.
    Perillo, M.
    Capozziello, S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 417 (03) : 1672 - 1683
  • [18] A two-point diagnostic for the HII galaxy Hubble diagram
    Leaf, Kyle
    Melia, Fulvio
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 474 (04) : 4507 - 4513
  • [19] Gamma-ray burst Hubble diagram to z=4.5
    Schaefer, BE
    ASTROPHYSICAL JOURNAL, 2003, 583 (02) : L67 - L70
  • [20] A HUBBLE DIAGRAM FROM TYPE II SUPERNOVAE BASED SOLELY ON PHOTOMETRY: THE PHOTOMETRIC COLOR METHOD
    de Jaeger, T.
    Gonzalez-Gaitan, S.
    Anderson, J. P.
    Galbany, L.
    Hamuy, M.
    Phillips, M. M.
    Stritzinger, M. D.
    Gutierrez, C. P.
    Bolt, L.
    Burns, C. R.
    Campillay, A.
    Castellon, S.
    Contreras, C.
    Folatelli, G.
    Freedman, W. L.
    Hsiao, E. Y.
    Krisciunas, K.
    Krzeminski, W.
    Kuncarayakti, H.
    Morrell, N.
    Olivares E, F.
    Persson, S. E.
    Suntzeff, N.
    ASTROPHYSICAL JOURNAL, 2015, 815 (02)