Existence and concentration of positive solutions for a logarithmic Schrodinger equation via penalizationmethod

被引:45
作者
Alves, Claudianor O. [1 ]
Ji, Chao [2 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58429900 Campina Grande, Paraiba, Brazil
[2] East China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
关键词
BOUND-STATES; PRINCIPLE;
D O I
10.1007/s00526-019-1674-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we are concerned with the following logarithmic Schrodinger equation {-epsilon(2) Delta u + V(x)u = u log u(2,) in R-N, u is an element of H-1(R-N), where epsilon > 0, N >= 1 and V : R-N -> R is a continuous potential. Under a local assumption on the potential V, we use the variational methods to prove the existence and concentration of positive solutions for the above problem.
引用
收藏
页数:27
相关论文
共 31 条
[1]  
Alves C.O., ARXIV190809153MATHAP
[2]  
Alves C.O, ARXIV190409772V1MATH
[3]  
Alves C.O, ARXIV190110329V2MATH
[4]   On concentration of solution to a Schrodinger logarithmic equation with deepening potential well [J].
Alves, Claudianor O. ;
de Morais Filho, Daniel C. ;
Figueiredo, Giovany M. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (14) :4862-4875
[5]   Existence and concentration of positive solutions for a Schrodinger logarithmic equation [J].
Alves, Claudianor O. ;
de Morais Filho, Daniel C. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (06)
[6]   Semiclassical states of nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Badiale, M ;
Cingolani, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 140 (03) :285-300
[7]   Gausson dynamics for logarithmic Schrodinger equations [J].
Ardila, Alex H. ;
Squassina, Marco .
ASYMPTOTIC ANALYSIS, 2018, 107 (3-4) :203-226
[8]  
Cingolani S., 1997, Topol. Methods Nonlinear Anal, V10, P1, DOI [10.12775/TMNA.1997.019, DOI 10.12775/TMNA.1997.019]
[9]   Fractional logarithmic Schrodinger equations [J].
d'Avenia, Pietro ;
Squassina, Marco ;
Zenari, Marianna .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (18) :5207-5216
[10]   ON THE LOGARITHMIC SCHRODINGER EQUATION [J].
D'Avenia, Pietro ;
Montefusco, Eugenio ;
Squassina, Marco .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (02)