Unraveling the dual defect sites in graphite carbon nitride for ultra-high photocatalytic H2O2 evolution

被引:596
|
作者
Zhang, Xu [1 ]
Ma, Peijie [1 ]
Wang, Cong [1 ]
Gan, Liyong [2 ,3 ]
Chen, Xianjie [4 ]
Zhang, Peng [5 ]
Wang, Yang [2 ,3 ]
Li, Hui [1 ]
Wang, Lihua [1 ]
Zhou, Xiaoyuan [2 ,3 ]
Zheng, Kun [1 ]
机构
[1] Beijing Univ Technol, Fac Mat & Mfg, Beijing Key Lab Microstruct & Properties Solids, Beijing 100124, Peoples R China
[2] Chongqing Univ, Coll Phys, Chongqing 400044, Peoples R China
[3] Chongqing Univ, Inst Adv Interdisciplinary Studies, Chongqing 400044, Peoples R China
[4] Southwest Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Environm Friendly Energy Mat, Mianyang 621010, Sichuan, Peoples R China
[5] Shanghai Univ, Sch Environm & Chem Engn, Key Lab Organ Compound Pollut Control Engn MOE, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
HYDROGEN-PEROXIDE PRODUCTION; ELECTROCHEMICAL SYNTHESIS; MOLECULAR-OXYGEN; SINGLE-ATOM; WATER; ABSORPTION; REDUCTION; STRATEGY;
D O I
10.1039/d1ee02369a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Defect engineering modified graphite carbon nitride (g-C3N4) has been widely used in various photocatalytic systems due to the enhanced catalytic activity of multiple defect sites (such as vacancies or functional groups). However, the key mechanism of action in each defect site in the corresponding photocatalytic surface reactions is still unclear. Here, the -C N groups and N vacancies were sequentially introduced into g-C3N4 (Nv-C N-CN) for photocatalytic production of high-value and multifunctional H2O2, and the effect of dual defect sites on the overall photocatalytic conversion process was systematically analyzed. The modification of the dual defect sites forms an electron-rich structure and leads to a more localized charge density distribution, which not only enhances the light absorption and carrier separation capabilities, but also significantly improves the selectivity and activity of H2O2 generation. Importantly, detailed experimental characterizations and theoretical calculations clearly revealed the key role of each defect site in the photocataLytic H2O2 surface reaction mechanism: the N vacancies can effectively adsorb and activate O-2, and the -C N groups facilitate the adsorption of H+, which synergistically promote H2O2 generation. The Nv-C N-CN reached a H2O2 generation rate of 3093 mu moL g(-1)h(-1) and achieved an apparent quantum efficiency of 36.2% at 400 nm, significantly surpassing the previously reported g-C3N4-based photocatalysts. Meanwhile, a solar-to-chemical conversion efficiency of 0.23% was achieved in pure water. Constructing defects and understanding their crucial role provides significant insights into the rational use of defect engineering to design and synthesize highly active catalytic materials for energy conversion and environmental remediation.
引用
收藏
页码:830 / 842
页数:13
相关论文
共 50 条
  • [31] Photocatalytic production of H2O2 and its in-situ environmental applications
    Huang, Song
    Yang, Xingzi
    Zhou, Liang
    Lei, Juying
    Wang, Lingzhi
    Liu, Yongdi
    Zhang, Jinlong
    RESEARCH ON CHEMICAL INTERMEDIATES, 2024, 50 (07) : 2917 - 2969
  • [32] Graphitic Carbon Nitride Based Materials Towards Photoproduction of H2O2
    Vuong, Hoai-Thanh
    Bui, Dai-Phat
    Nguyen, Duc-Viet
    Pho Phuong, Ly
    Duc Minh, Phan Pham
    Do Dat, Tran
    Hieu, Nguyen Huu
    CHEMPHOTOCHEM, 2023, 7 (05)
  • [33] Efficient photocatalytic H2O2 production from oxygen and pure water over graphitic carbon nitride decorated by oxidative red phosphorus
    Zhang, Jingzhen
    Lang, Junyu
    Wei, Yan
    Zheng, Qian
    Liu, Liyan
    Hu, Yun-Hang
    Zhou, Baoxue
    Yuan, Congli
    Long, Mingce
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 298
  • [34] Engineering carbon nitride with cyanide groups for efficient photocatalytic alcohol oxidation and H2O2 production-Utilization of photogenerated electrons and holes
    Zhang, Bing
    Wang, Shan
    Qiu, Chuntian
    Xu, Yangsen
    Zuo, Jiandong
    APPLIED SURFACE SCIENCE, 2022, 573
  • [35] P and Cu Dual Sites on Graphitic Carbon Nitride for Photocatalytic CO2 Reduction to Hydrocarbon Fuels with High C2H6 Evolution
    Wang, Gang
    Chen, Zhe
    Wang, Tao
    Wang, Dingsheng
    Mao, Junjie
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (40)
  • [36] Surface reconstructed polymeric carbon nitride with promoted carrier separation for photocatalytic H2O2 production
    Lin, Feng
    Wang, Tong
    Lei, Ying
    Zhang, Shaozheng
    Yang, Jianhui
    Wang, Yulin
    Liu, Jia
    Yu, Jiangang
    Shi, Jiale
    Lv, Liang
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (09) : 4202 - 4205
  • [37] Cyano-rich porous carbon nitride nanosheets for enhanced photocatalytic H2O2 production
    Zhou, Chengqian
    Song, Yanhua
    Wang, Zhuanghao
    Liu, Jinyuan
    Sun, Peipei
    Mo, Zhao
    Yi, Jianjian
    Zhai, Linzhi
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (03):
  • [38] The critical role of furfural alcohol in photocatalytic H2O2 production on TiO2
    Zhang, Jingzhen
    Zheng, Longhui
    Wang, Fu
    Chen, Chao
    Wu, Haodong
    Leghari, Sajjad Ahmed Khan
    Long, Mingce
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 269 (269)
  • [39] Constructing dual active sites modified crystalline carbon nitride with diminished excitation binding energy for overall photosynthesis of H2O2
    Zeng, Lei
    Jiang, Chonghui
    Tan, Yueyang
    Yang, Wei
    Hu, Qiushi
    Chen, Xihan
    Jiang, Yabin
    Wang, Yang-Gang
    Song, Wulin
    Huang, Limin
    CHEMICAL ENGINEERING JOURNAL, 2025, 506
  • [40] Bandgap engineering of polymetric carbon nitride copolymerized by 2,5,8-triamino-tri-s-triazine (melem) and barbituric acid for efficient nonsacrificial photocatalytic H2O2 production
    Teng, Zhenyuan
    Cai, Wenan
    Liu, Sixiao
    Wang, Chengyin
    Zhang, Qitao
    Su, Chenliang
    Ohno, Teruhisa
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 271 (271)