The effect of phase angle on crack growth mechanisms under thermo-mechanical fatigue loading

被引:25
|
作者
Jones, J. [1 ]
Whittaker, M. [1 ]
Lancaster, R. [1 ]
Hyde, C. [2 ]
Rouse, J. [2 ]
Engel, B. [2 ]
Pattison, S. [3 ]
Stekovic, S. [4 ]
Jackson, C. [5 ]
Li, H. Y. [5 ]
机构
[1] Swansea Univ, Inst Struct Mat, Bay Campus, Swansea SA1 8EN, W Glam, Wales
[2] Univ Nottingham, Engn Fac, Dept Mech Mat & Mfg, Nottingham NG7 2RD, England
[3] Rolls Royce Plc, Elton Rd, Derby DE24 8BJ, England
[4] Linkoping Univ, Dept Management & Engn, Linkoping, Sweden
[5] Univ Birmingham, Sch Met & Mat, Birmingham B15 2TT, W Midlands, England
基金
欧盟地平线“2020”;
关键词
Thermo-mechanical fatigue; Phase angle; Creep; Oxidation; DEFORMATION MECHANISMS; TEMPERATURE; PROPAGATION; SUPERALLOY; BEHAVIOR;
D O I
10.1016/j.ijfatigue.2020.105539
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The current paper describes TMF crack growth behaviour in an advanced nickel-based superalloy. Changes in behaviour are examined which occur as a function of the phase angle between applied stress and temperature. The fractography of the failed specimens reveals changes from transgranular to intergranular growth between high and low phase angle tests as a result of the onset of high temperature damage mechanisms. More targeted testing has also been undertaken to isolate the contributions of these mechanisms, with specific transitions in behaviour becoming clear in 90 degrees diamond cycles, where dynamic crack growth and oxidation strongly interact.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Short fatigue crack growth sensitivity to thermo-mechanical fatigue loading
    Leost, Nicolas
    Missoum-Benziane, Djamel
    Rambaudon, Matthieu
    Cameriano, Laurent
    Comte, Francois
    Le Pannerer, Brice
    Maurel, Vincent
    INTERNATIONAL JOURNAL OF FATIGUE, 2025, 191
  • [2] Thermo-Mechanical Fatigue Crack Growth and Phase Angle Effects in Ti6246
    Palmer, Jennie
    Jones, Jonathan
    Whittaker, Mark
    Williams, Steve
    MATERIALS, 2022, 15 (18)
  • [3] Fatigue crack growth modeling in the metallization of power semiconductors under cyclic thermo-mechanical loading
    Springer, Martin
    Nelhiebel, Michael
    Pettermann, Heinz E.
    2016 17TH INTERNATIONAL CONFERENCE ON THERMAL, MECHANICAL AND MULTI-PHYSICS SIMULATION AND EXPERIMENTS IN MICROELECTRONICS AND MICROSYSTEMS (EUROSIME), 2016,
  • [4] Development of fatigue crack growth testing under thermo-mechanical fatigue conditions
    Jacques, S.
    Lynch, M.
    Wisbey, A.
    Stekovic, S.
    Williams, S.
    MATERIALS AT HIGH TEMPERATURES, 2013, 30 (01) : 49 - 61
  • [5] THERMO-MECHANICAL FATIGUE CRACK GROWTH TESTING
    Borg, Jennifer
    Platts, Norman
    Gill, Peter
    Mann, Jonathan
    Currie, Chris
    PROCEEDINGS OF THE ASME 2020 PRESSURE VESSELS & PIPING CONFERENCE (PVP2020), VOL 1, 2020,
  • [6] Crack tip field analysis for thermo-mechanical fatigue loading
    Shlyannikov, V.
    Sulamanidze, A.
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2023, 125
  • [7] Crack growth in a coated gas turbine superalloy under thermo-mechanical fatigue
    Jung, Arnd
    Schnell, Alexander
    INTERNATIONAL JOURNAL OF FATIGUE, 2008, 30 (02) : 286 - 291
  • [8] Crack growth characterisation of A356-T7 aluminum alloy under thermo-mechanical fatigue loading
    Merhy, E.
    Remy, L.
    Maitournam, H.
    Augustins, L.
    ENGINEERING FRACTURE MECHANICS, 2013, 110 : 99 - 112
  • [9] Development of a phenomenological method for description of crack initiation behavior under thermo-mechanical fatigue loading
    Cui, Lu
    Wang, Peng
    ADVANCED MATERIALS, PTS 1-3, 2012, 415-417 : 986 - +
  • [10] Thermo-Mechanical Fatigue Crack Growth of RR1000
    Pretty, Christopher John
    Whitaker, Mark Thomas
    Williams, Steve John
    MATERIALS, 2017, 10 (01):