On the facets of the stable set polytope of quasi-line graphs

被引:2
作者
Stauffer, Gautier [1 ]
机构
[1] Univ Bordeaux 1, Inst Math Bordeaux, F-33405 Talence, France
关键词
Stable set polytope; Facets; Quasi-line graphs; CLAW-FREE GRAPHS; CIRCULAR INTERVAL-GRAPHS; POLYHEDRA;
D O I
10.1016/j.orl.2011.02.009
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
While the Ben Rebea Theorem provides a complete linear description of the stable set polytope of quasi-line graphs, no minimal description is currently available. In this paper, we shed some light on this question by (1) showing that any facet of this polytope is such that the restriction of the inequality to maximal coefficients yields a rank facet and (2) providing a complete description of the strongly minimal facets. We also show that those results support two conjectures refining the Ben Rebea Theorem. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:208 / 212
页数:5
相关论文
共 21 条
  • [1] Chudnovsky M., 2004, COMMUNICATION
  • [2] Chudnovsky M., 2005, BCC, V327, P153
  • [3] Claw-free graphs. III. Circular interval graphs
    Chudnovsky, Maria
    Seymour, Paul
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (04) : 812 - 834
  • [4] CERTAIN POLYTOPES ASSOCIATED WITH GRAPHS
    CHVATAL, V
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 18 (02) : 138 - 154
  • [5] MAXIMUM MATCHING AND A POLYHEDRON WITH O'1-VERTICES
    EDMONDS, J
    [J]. JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICS AND MATHEMATICAL, 1965, B 69 (1-2): : 125 - +
  • [6] Edmonds J. R., 1974, HYP SEM, P214
  • [7] The stable set polytope of quasi-line graphs
    Eisenbrand, Friedrich
    Oriolo, Gianpaolo
    Stauffer, Gautier
    Ventura, Paolo
    [J]. COMBINATORICA, 2008, 28 (01) : 45 - 67
  • [8] FAENZA Y, 2009, HIDDEN MATCHING STRU
  • [9] The rank facets of the stable set polytope for claw-free graphs
    Galluccio, A
    Sassano, A
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 69 (01) : 1 - 38
  • [10] Galluccio A., 2010, ELECT NOTES DISCRETE, V36, P1025