2-factors in dense graphs

被引:29
作者
Alon, N [1 ]
Fischer, E [1 ]
机构
[1] TEL AVIV UNIV,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,DEPT MATH,IL-69978 TEL AVIV,ISRAEL
关键词
D O I
10.1016/0012-365X(95)00242-O
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A conjecture of Sauer and Spencer states that any graph G on n vertices with minimum degree at least 2/3n contains any graph H on n vertices with maximum degree 2 or less. This conjecture is proven here for all sufficiently large n.
引用
收藏
页码:13 / 23
页数:11
相关论文
共 12 条
[1]   ALMOST H-FACTORS IN DENSE GRAPHS [J].
ALON, N ;
YUSTER, R .
GRAPHS AND COMBINATORICS, 1992, 8 (02) :95-102
[2]   THE STRONG CHROMATIC NUMBER OF A GRAPH [J].
ALON, N .
RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (01) :1-7
[3]  
ALON N, IN PRESS J COMBIN B
[4]  
BOLLOBAS B, 1978, P C INT CNRS
[5]  
Bollobas B., 1978, EXTREMAL GRAPH THEOR
[6]  
Bondy J.A., 1971, J COMBINATORIAL THEO, V11, P80
[7]   TAIL OF THE HYPERGEOMETRIC DISTRIBUTION [J].
CHVATAL, V .
DISCRETE MATHEMATICS, 1979, 25 (03) :285-287
[8]  
Corradi K., 1963, Acta Math. Acad. Sci. Hungar, V14, P423
[9]   ON CIRCUITS IN GRAPHS [J].
ELZAHAR, MH .
DISCRETE MATHEMATICS, 1984, 50 (2-3) :227-230
[10]   EDGE DISJOINT PLACEMENT OF GRAPHS [J].
SAUER, N ;
SPENCER, J .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1978, 25 (03) :295-302