Temperature analysis of Si0.55Ge0.45 sourced nanowire tunnel field-effect transistor based on charge plasma and gate stack

被引:1
|
作者
Mahto, Chetlal [1 ]
Sharma, Prithvi Raj [1 ]
Nishad, Siddharth Kumar [1 ]
Kumar, Shubham [1 ]
Singh, Navaneet Kumar [1 ]
Singh, Shradhya [2 ]
Kar, Rajib [3 ]
Mandal, Durbadal [3 ]
机构
[1] VBU, UCET, Hazaribagh, India
[2] Lok Nayak Jai Prakash Inst Technol, Chapra, Bihar, India
[3] NIT Durgapur, Durgapur, WB, India
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2021年 / 127卷 / 12期
关键词
Charge plasma; Gate stacking; SiGe; Nanowire; Tunnel FET; Temperature analysis; Mole fraction; PERFORMANCE; ANALOG;
D O I
10.1007/s00339-021-05100-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, conventional charge-plasma nanowire tunnel field-effect transistor (CP-NWTFET) has been applied by gate stacking and SiGe sourced to design the proposed Si0.55Ge0.45 sourced nanowire tunnel field-effect transistor based on charge plasma and gate stack (SiGe-GS-CP-NWTFET) to enhance electrical characteristics. Comparison of drain current (I-d), transconductance (g(m)), second-order transconductance (g(m2)), third-order transconductance (g(m3)), and transconductance generation factor are analysed between conventional CP-NWTFET and SiGe-GS-CP-NWTFET. The results demonstrate that the proposed SiGe-GS-CP-NWTFET device possesses a larger drive current, transconductance, and transconductance factor those of the conventional device. Further, the impact of temperature on various parameters such as subthreshold slope (SS), threshold voltage (V-th), I-on, I-off, and I-on/I-off ratio is analysed for the proposed SiGe-GS-CP-NWTFET device. With an increase in temperature, both ON-current and OFF-current upsurge which results in a decrease in the current ratio. A lower subthreshold slope is observed for lower temperature, whereas a lower threshold voltage is observed for higher temperature. The parameters, like the electric field, potential, and energy band diagram which help in understanding the physics of the device, are also analysed for various temperatures. The impact of mole fraction(x) of Ge in SiGe on SS, V-th, I-on, I-off, and I-on/I-off ratio is also analysed for the proposed device. I-on, I-off increase with mole fraction, whereas V-th decreases with temperature. The current ratio and SS are found to be better for the mole fraction of x = 0.45. The improved performance compared to the conventional CP-NWTFET is attributed to the superiority of the proposed SiGe-GS-CP-NWTFET device.
引用
收藏
页数:10
相关论文
共 50 条