Investigation of resistance of nuclear fuel cladding to hydride cracking

被引:0
|
作者
Makarevicius, V. [1 ]
Grybenas, A. [1 ]
Kriukiene, R. [1 ]
机构
[1] Lithuanian Energy Inst, LT-44403 Kaunas, Lithuania
来源
MECHANIKA | 2010年 / 05期
关键词
TEMPERATURE; HYDROGEN; ALLOYS; NB;
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this study hydride induced cracking was investigated using specimens prepared from Zircaloy-4 fuel cladding materials. Temperature dependence of the delayed hydride cracking (DHC) rate and the influence of heat treatment on hydride cracking was evaluated. After adding about 200 wt-ppm of hydrogen to the samples DHC velocity was determined on fatigue precracked specimens using pin-loading tension technique. Tests were done under constant loading and initial K-I value of about 15 MPa root m. Crack growth velocity was determined at temperature range 144- 283 degrees C. It was found that cracking velocity has Arrhenius type temperature dependence and increases up to 275 degrees C, at higher temperatures cracking rate sharply decreases. Delayed hydride cracking velocity depends on thermal treatment conditions of the cladding material, DHC rate is about 1.6 times higher in cold-worked than in stress-relieved material and no cracking was observed in recrystallized material.
引用
收藏
页码:25 / 30
页数:6
相关论文
共 50 条
  • [1] DELAYED HYDRIDE CRACKING IN ZIRCALOY FUEL CLADDING - AN IAEA COORDINATED RESEARCH PROGRAMME
    Coleman, C.
    Grigoriev, V.
    Inozemtsev, V.
    Markelov, V.
    Roth, M.
    Makarevicius, V.
    Kim, Y. S.
    Ali, Kanwar Liagat
    Chakravartty, J. K.
    Mizrahi, R.
    Lalgudi, R.
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2009, 41 (02) : 171 - 178
  • [2] FEM STUDY OF DELAYED HYDRIDE CRACKING IN ZIRCONIUM ALLOY FUEL CLADDING
    Uno, Masayoshi
    Ito, Masato
    Muta, Hiroaki
    Kurosaki, Ken
    Yamanaka, Shinsuke
    Ogata, Keizo
    ADVANCES IN ENERGY MATERIALS, 2009, 205 : 59 - +
  • [3] Threshold stress of hydride reorientation in zirconium alloy nuclear fuel cladding tubes: A theoretical determination
    Qin, W.
    Liang, J. L.
    Cheng, Z. Q.
    Shi, M. H.
    Gu, D.
    Li, T. L.
    Zhu, W. L.
    Szpunar, J. A.
    JOURNAL OF NUCLEAR MATERIALS, 2022, 563
  • [4] Assessing the fracture toughness of Zircaloy-4 fuel rod cladding tubes: impact of delayed hydride cracking
    Francois, Pierrick
    Petit, Tom
    Auzoux, Quentin
    Le Boulch, David
    Nascimento, Isabela Zarpellon
    Besson, Jacques
    INTERNATIONAL JOURNAL OF FRACTURE, 2024, 247 (01) : 51 - 72
  • [5] Hydride Reorientation and Delayed Hydride Cracking of Spent Fuel Rods in Dry Storage
    Kim, Young S.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2009, 40A (12): : 2867 - 2875
  • [6] Evaluation of Hydride Effect on Fuel Cladding Degradation
    Kim, Hyun-Gil
    Kim, Il-Hyun
    Park, Sang-Yoon
    Park, Jeong-Yong
    Jeong, Yong-Hwan
    KOREAN JOURNAL OF METALS AND MATERIALS, 2010, 48 (08): : 717 - 723
  • [7] Methodology for numerical evaluation of fracture resistance under pinch loading of spent nuclear fuel cladding containing reoriented hydrides
    Kim, Seyeon
    Lee, Sanghoon
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2024, 56 (06) : 1975 - 1988
  • [8] Formation and characterization of hydride rim structures in Zircaloy-4 nuclear fuel cladding tubes
    Kamerman, David
    Bachhav, Mukesh
    Yao, Tiankai
    Pu, Xiaofei
    Burns, Jatuporn
    JOURNAL OF NUCLEAR MATERIALS, 2023, 586
  • [9] An assessment of delayed hydride cracking in zirconium alloy cladding tubes under stress transients
    Chan, K. S.
    INTERNATIONAL MATERIALS REVIEWS, 2013, 58 (06) : 349 - 373
  • [10] Zirconium hydride phase mapping in Zircaloy-2 cladding after delayed hydride cracking
    Colldeweih, Aaron W.
    Makowska, Malgorzata G.
    Tabai, Omaia
    Sanchez, Dario Ferreira
    Bertsch, Johannes
    MATERIALIA, 2023, 27