共 43 条
Computing eigenvalues of quasi-rational Bernstein-Vandermonde matrices to high relative accuracy
被引:9
作者:
Yang, Zhao
[1
,3
]
Ma, Xiao-Xiao
[2
,3
]
机构:
[1] Shaanxi Univ Technol, Sch Math & Comp Sci, Hanzhong 723001, Shaanxi, Peoples R China
[2] Hunan Univ, Sch Math, Changsha, Peoples R China
[3] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan, Peoples R China
关键词:
eigenvalues;
generalized sign regular matrices;
high relative accuracy;
parameter matrix;
quasi-rational Bernstein-Vandermonde matrix;
SINGULAR-VALUES;
COMPUTATIONS;
SYSTEMS;
FACTORIZATIONS;
DECOMPOSITION;
ALGORITHM;
D O I:
10.1002/nla.2421
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this article, we consider how to accurately solve the eigenvalue problem for a class of quasi-rational Bernstein-Vandermonde (q-RBV) matrices. This class of matrices belongs to generalized sign regular matrices with signature (1, horizontal ellipsis ,1,-1). An algorithm is developed to accurately compute the parameter matrix for q-RBV matrices. Based on the parameter matrix, all the eigenvalues of q-RBV matrices have been computed to high relative accuracy. The perturbation theory for the eigenvalues of q-RBV matrices and the error analysis of our proposed algorithm are provided. Numerical experiments are performed to confirm the claimed high relative accuracy.
引用
收藏
页数:21
相关论文