Computing eigenvalues of quasi-rational Bernstein-Vandermonde matrices to high relative accuracy

被引:9
作者
Yang, Zhao [1 ,3 ]
Ma, Xiao-Xiao [2 ,3 ]
机构
[1] Shaanxi Univ Technol, Sch Math & Comp Sci, Hanzhong 723001, Shaanxi, Peoples R China
[2] Hunan Univ, Sch Math, Changsha, Peoples R China
[3] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan, Peoples R China
关键词
eigenvalues; generalized sign regular matrices; high relative accuracy; parameter matrix; quasi-rational Bernstein-Vandermonde matrix; SINGULAR-VALUES; COMPUTATIONS; SYSTEMS; FACTORIZATIONS; DECOMPOSITION; ALGORITHM;
D O I
10.1002/nla.2421
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider how to accurately solve the eigenvalue problem for a class of quasi-rational Bernstein-Vandermonde (q-RBV) matrices. This class of matrices belongs to generalized sign regular matrices with signature (1, horizontal ellipsis ,1,-1). An algorithm is developed to accurately compute the parameter matrix for q-RBV matrices. Based on the parameter matrix, all the eigenvalues of q-RBV matrices have been computed to high relative accuracy. The perturbation theory for the eigenvalues of q-RBV matrices and the error analysis of our proposed algorithm are provided. Numerical experiments are performed to confirm the claimed high relative accuracy.
引用
收藏
页数:21
相关论文
共 43 条
[41]   Accurate solutions of structured generalized Kronecker product linear systems [J].
Yang, Zhao ;
Huang, Rong ;
Zhu, Wei ;
Liu, Jianzhou .
NUMERICAL ALGORITHMS, 2021, 87 (02) :797-818
[42]   Accurate computations for eigenvalues of products of Cauchy-polynomial-Vandermonde matrices [J].
Yang, Zhao ;
Huang, Rong ;
Zhu, Wei .
NUMERICAL ALGORITHMS, 2020, 85 (01) :329-351
[43]   Computing singular values of diagonally dominant matrices to high relative accuracy [J].
Ye, Qiang .
MATHEMATICS OF COMPUTATION, 2008, 77 (264) :2195-2230