Computing eigenvalues of quasi-rational Bernstein-Vandermonde matrices to high relative accuracy

被引:9
作者
Yang, Zhao [1 ,3 ]
Ma, Xiao-Xiao [2 ,3 ]
机构
[1] Shaanxi Univ Technol, Sch Math & Comp Sci, Hanzhong 723001, Shaanxi, Peoples R China
[2] Hunan Univ, Sch Math, Changsha, Peoples R China
[3] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan, Peoples R China
关键词
eigenvalues; generalized sign regular matrices; high relative accuracy; parameter matrix; quasi-rational Bernstein-Vandermonde matrix; SINGULAR-VALUES; COMPUTATIONS; SYSTEMS; FACTORIZATIONS; DECOMPOSITION; ALGORITHM;
D O I
10.1002/nla.2421
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider how to accurately solve the eigenvalue problem for a class of quasi-rational Bernstein-Vandermonde (q-RBV) matrices. This class of matrices belongs to generalized sign regular matrices with signature (1, horizontal ellipsis ,1,-1). An algorithm is developed to accurately compute the parameter matrix for q-RBV matrices. Based on the parameter matrix, all the eigenvalues of q-RBV matrices have been computed to high relative accuracy. The perturbation theory for the eigenvalues of q-RBV matrices and the error analysis of our proposed algorithm are provided. Numerical experiments are performed to confirm the claimed high relative accuracy.
引用
收藏
页数:21
相关论文
共 43 条
[1]  
Alfa AS, 2002, MATH COMPUT, V71, P217, DOI 10.1090/S0025-5718-01-01325-4
[2]   TOTALLY POSITIVE MATRICES [J].
ANDO, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 90 :165-219
[3]   A fast parallel Bjorck-Pereyra-type algorithm for solving Cauchy linear equations [J].
Boros, T ;
Kailath, T ;
Olshevsky, V .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 303 :265-293
[4]   LDU FACTORIZATION OF NONSINGULAR TOTALLY NONPOSITIVE MATRICES [J].
Canto, Rafael ;
Koev, Plamen ;
Ricarte, Beatriz ;
Urbano, Ana M. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (02) :777-782
[5]   Accurate computations with collocation matrices of rational bases [J].
Delgado, J. ;
Pena, J. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) :4354-4364
[6]   ACCURATE COMPUTATIONS WITH COLLOCATION MATRICES OF q-BERNSTEIN POLYNOMIALS [J].
Delgado, Jorge ;
Pena, J. M. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (02) :880-893
[7]   The accurate and efficient solution of a totally positive generalized Vandermonde linear system [J].
Demmel, J ;
Koev, P .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 27 (01) :142-152
[8]   Computing the singular value decomposition with high relative accuracy [J].
Demmel, J ;
Gu, M ;
Eisenstat, S ;
Slapnicar, I ;
Veselic, K ;
Drmac, Z .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 299 (1-3) :21-80
[9]  
Demmel J, 2008, ACTA NUMER, V17, P87, DOI 10.1017/S0962492906350015
[10]   An orthogonal high relative accuracy algorithm for the symmetric eigenproblem [J].
Dopico, FM ;
Molera, JM ;
Moro, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (02) :301-351