Marchenko-Ostrovski mappings for periodic Jacobi matrices

被引:3
作者
Korotyaev, E. [1 ]
Kutsenko, A. [2 ]
机构
[1] Humboldt Univ, Math Inst, D-12489 Berlin, Germany
[2] St Petersburg State Univ, Fac Math & Mech, St Petersburg, Russia
关键词
D O I
10.1134/S1061920807040115
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider 1D periodic Jacobi matrices. The spectrum of this operator is purely absolutely continuous and consists of intervals separated by gaps. We solve the inverse problem (including a characterization) in terms of vertical slits on the quasimomentum domain. Furthermore, we obtain a priori two-sided estimates for vertical slits in terms of Jacobi matrices.
引用
收藏
页码:448 / 452
页数:5
相关论文
共 13 条
[1]  
BATTIG D, 1993, J MATH PURE APPL, V72, P553
[2]   GAPS AND BANDS OF ONE DIMENSIONAL PERIODIC SCHRODINGER-OPERATORS [J].
GARNETT, J ;
TRUBOWITZ, E .
COMMENTARII MATHEMATICI HELVETICI, 1984, 59 (02) :258-312
[3]   The inverse problem for the Hill operator, a direct approach (vol 129, pg 567, 1997) [J].
Kargaev, P ;
Korotyaev, E .
INVENTIONES MATHEMATICAE, 1999, 138 (01) :227-227
[4]   Gap-length mapping for periodic Jacobi matrices [J].
Korotyaev, E. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2006, 13 (01) :64-69
[5]   Inverse problem for the discrete 1D Schrodinger operator with small periodic potentials [J].
Korotyaev, E ;
Kutsenko, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 261 (03) :673-692
[6]  
Korotyaev E, 2003, INT MATH RES NOTICES, V2003, P2019
[7]   Spectral estimates for periodic Jacobi matrices [J].
Korotyaev, E ;
Krasovsky, IV .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 234 (03) :517-532
[8]   The inverse problem for the Hill operator .1. [J].
Korotyaev, E .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1997, 1997 (03) :113-125
[9]  
Marchenko VA., 1975, Math. USSR Sb, V26, P493, DOI [10.1070/SM1975v026n04ABEH002493, DOI 10.1070/SM1975V026N04ABEH002493]
[10]  
Perkolab L. V., 1984, ANAL PRILOZHEN, V42, P107