Nonparametric multi-step prediction in nonlinear state space dynamic systems

被引:3
作者
Vila, Jean-Pierre [1 ]
机构
[1] INRA SupAgro, UMR Math Informat & Stat Environm & Agron, F-34060 Montpellier, France
关键词
State space dynamic systems; Prediction; Filtering; Smoothing; Kernel density estimators;
D O I
10.1016/j.spl.2010.09.020
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Filtering and smoothing of stochastic state space dynamic systems have benefited from several generations of estimation approaches since the seminal works of Kalman in the sixties. A set of global analytical or numerical methods are now available, such as the well-known sequential Monte Carlo particle methods which offer some theoretical convergence results for both types of problems. However except in the case of linear Gaussian systems, objectives of the third kind i.e. prediction objectives, which aim at estimating k time steps ahead the anticipated probability density function of the system state variables, conditional on past and present system output observations, still raise theoretical and practical difficulties. The aim of this paper is to propose a nonparametric particle multistep prediction method able to consistently estimate such anticipated conditional pdf of the state variables as well as their expectations. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:71 / 76
页数:6
相关论文
共 50 条