The effective mass, fitness function and enhanced thermoelectric properties in CuSbS2 for p-type thermoelectric material applications: Density functional theory approach

被引:6
作者
Ashani, Timothy M. [1 ]
Adebambo, Paul O. [1 ]
Ayedun, Funmilayo [2 ]
Osinuga, Idowu O. [3 ]
Idowu, Mopelola A. [4 ]
Adebayo, Gboyega A. [1 ]
机构
[1] Fed Univ Agr, Dept Phys, PMB 2240, Abeokuta, Nigeria
[2] Natl Open Univ Nigeria, Dept Pure & Appl Sci, Abuja, Nigeria
[3] Fed Univ Agr, Dept Math, PMB 2240, Abeokuta, Nigeria
[4] Fed Univ Agr, Dept Chem, PMB 2240, Abeokuta, Nigeria
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2021年 / 273卷
关键词
DFT; Band structure; Thermoelectric; Effective mass; Electronic fitness function; ELECTRONIC-STRUCTURE;
D O I
10.1016/j.mseb.2021.115404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The thermoelectric properties, electronic fitness function (EFF) and transport inverse effective mass (m*) of CuSbS2 were predicted using Density Functional Theory along with Boltzmann transport theory. The Generalised Gradient Approximation as embedded in projector - augmented wave was used in this work. From our results, CuSbS2 exhibits an indirect narrow bandgap of 0.78 eV. The Power factor (PF) as well as the Seebeck coefficient (S) increase with temperature at every hole carrier concentration, and while PF is temperature dependent, S is almost independent of temperature for electron carrier concentrations making the electron minority carrier in the material. It was also revealed that this material has light m* and high EFF at 300, 500, 700 and 800 K. The obtained EFF implies that the thermoelectric performance of this material increases with temperature and can also be enhanced via doping. We obtained an electronic Figure of merit of 0.2 at room temperature which increase to 0.49 at 800 K. These results revealed that CuSbS2 is a promising P-type thermoelectric material.
引用
收藏
页数:6
相关论文
共 37 条
  • [1] Abdelaziz G., 2017, J ALLOYS COMPD, V141
  • [2] Adebambo P.O., 2020, SOLID STATE SCI, V1293, P31158
  • [3] Pressure effect on the structural and electronic properties of CuInS2
    Adetunji, B. I.
    [J]. SOLID STATE SCIENCES, 2016, 55 : 42 - 47
  • [4] Broyden C. G., 1970, Journal of the Institute of Mathematics and Its Applications, V6, P222
  • [5] Pseudopotentials periodic table: From H to Pu
    Dal Corso, Andrea
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2014, 95 : 337 - 350
  • [6] Thermoelectric cooling and power generation
    DiSalvo, FJ
    [J]. SCIENCE, 1999, 285 (5428) : 703 - 706
  • [7] Electronic structure as a guide in screening for potential thermoelectrics: Demonstration for half-Heusler compounds
    Feng, Zhenzhen
    Fu, Yuhao
    Putatunda, Aditya
    Zhan, Yongsheng
    Singh, David J.
    [J]. PHYSICAL REVIEW B, 2019, 100 (08)
  • [8] Advanced capabilities for materials modelling with QUANTUM ESPRESSO
    Giannozzi, P.
    Andreussi, O.
    Brumme, T.
    Bunau, O.
    Nardelli, M. Buongiorno
    Calandra, M.
    Car, R.
    Cavazzoni, C.
    Ceresoli, D.
    Cococcioni, M.
    Colonna, N.
    Carnimeo, I.
    Dal Corso, A.
    de Gironcoli, S.
    Delugas, P.
    DiStasio, R. A., Jr.
    Ferretti, A.
    Floris, A.
    Fratesi, G.
    Fugallo, G.
    Gebauer, R.
    Gerstmann, U.
    Giustino, F.
    Gorni, T.
    Jia, J.
    Kawamura, M.
    Ko, H-Y
    Kokalj, A.
    Kucukbenli, E.
    Lazzeri, M.
    Marsili, M.
    Marzari, N.
    Mauri, F.
    Nguyen, N. L.
    Nguyen, H-V
    Otero-de-la-Roza, A.
    Paulatto, L.
    Ponce, S.
    Rocca, D.
    Sabatini, R.
    Santra, B.
    Schlipf, M.
    Seitsonen, A. P.
    Smogunov, A.
    Timrov, I.
    Thonhauser, T.
    Umari, P.
    Vast, N.
    Wu, X.
    Baroni, S.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (46)
  • [9] Hamdollah S., 2018, J OPT NANO, V3, P1
  • [10] Jason B., 2015, J ALLOYS COMPD, V643, P186