Clinical application of a sub-fractionation workflow for intrafraction re-planning during prostate radiotherapy treatment on a 1.5 Tesla MR-Linac: A practical method to mitigate intrafraction motion

被引:17
作者
Willigenburg, Thomas [1 ,2 ]
Zachiu, Cornel [1 ]
Bol, Gijsbert H. [1 ]
de Groot-van Beugel, Eline N. [1 ]
Lagendijk, Jan J. W. [1 ]
van der Voort van Zyp, Jochem R. N. [1 ]
Raaymakers, Bas W. [1 ]
de Boer, Johannes C. J. [1 ]
机构
[1] Univ Med Ctr Utrecht, Dept Radiat Oncol, NL-3508 GA Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, Heidelberglaan 100,Postbus 85500,Postal Room Q00, NL-3584 GA Utrecht, Netherlands
关键词
MRI-guided radiotherapy; MR-Linac; Radiotherapy workflow; Intrafraction adaptation; Prostate cancer; RADIATION-THERAPY; DEFORMATION; ALPHA/BETA;
D O I
10.1016/j.radonc.2022.09.004
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Intrafraction motion during radiotherapy limits margin reduction and dose escalation. Magnetic resonance (MR)-guided linear accelerators (MR-Linac) have emphasised this issue by enabling intrafraction imaging. We present and clinically apply a new workflow to counteract systematic intrafraction motion during MR-guided stereotactic body radiotherapy (SBRT).Materials and methods: With the sub-fractionation workflow, the daily dose is delivered in multiple sequential parts (sub-fractions), each adapted to the latest anatomy. As each sub-fractionation treatment plan complies with the dose constraints, no online dose accumulation is required. Imaging and treatment planning are executed in parallel with dose delivery to minimise dead time, enabling an efficient work-flow. The workflow was implemented on a 1.5 T MR-Linac and applied in 15 prostate cancer (PCa) patients treated with 5 x 7.25 Gy in two sub-fractions of 3.625 Gy (10 x 3.625 Gy in total). Intrafraction clinical target volume (CTV) motion was determined and compared to a workflow with single-plan delivery. Furthermore, required planning target volume (PTV) margins were determined.Results: Average on-table time was 42.7 min. Except for two fractions, all fractions were delivered within 60 min. Average intrafraction 3D CTV displacement (+/- standard deviation) was 1.1 mm (+/- 0.7) with the sub-fractionation workflow, whereas this was up to 3.5 mm (+/- 2.4) without sub-fractionation. Calculated PTV margins required with sub-fractionation were 1.0 mm (left-right), 2.4 mm (cranial -caudal), and 2.6 mm (anterior-posterior).Conclusion: Feasibility of the sub-fractionation workflow was demonstrated in 15 PCa patients treated with two sub-fractions on a 1.5 T MR-Linac. The workflow allows for significant PTV margin reduction in these patients by reducing systematic intrafraction motion during SBRT.(c) 2022 The Author(s). Published by Elsevier B.V. Radiotherapy and Oncology 176 (2022) 25-30 This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:25 / 30
页数:6
相关论文
共 26 条
  • [1] Simultaneous multi-modality ROI delineation in clinical practice
    Bol, Gijsbert H.
    Kotte, Alexis N. T. J.
    van der Heide, Uulke A.
    Lagendijk, Jan J. W.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2009, 96 (02) : 133 - 140
  • [2] Quantitative investigation of dose accumulation errors from intra-fraction motion in MRgRT for prostate cancer
    Bosma, L. S.
    Zachiu, C.
    Ries, M.
    Denis de Senneville, B.
    Raaymakers, B. W.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (06)
  • [3] Prostate alpha/beta revisited - an analysis of clinical results from 14 168 patients
    Dasu, Alexandru
    Toma-Dasu, Iuliana
    [J]. ACTA ONCOLOGICA, 2012, 51 (08) : 963 - 974
  • [4] de Muinck Keizer DM, 2021, SEMINAL VESICL UNPUB
  • [5] Fast contour propagation for MR-guided prostate radiotherapy using convolutional neural networks
    Eppenhof, K. A. J.
    Maspero, M.
    Savenije, M. H. F.
    de Boer, J. C. J.
    van Zyp, J. R. N. van der Voort
    Raaymakers, B. W.
    Raaijmakers, A. J. E.
    Veta, M.
    van den Berg, C. A. T.
    Pluim, J. P. W.
    [J]. MEDICAL PHYSICS, 2020, 47 (03) : 1238 - 1248
  • [6] Fischer-Valuck BW, 2017, ADV RADIAT ONCOL, V2, P485, DOI 10.1016/j.adro.2017.05.006
  • [7] Is α/β for prostate tumors really low?
    Fowler, J
    Chappell, R
    Ritter, M
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2001, 50 (04): : 1021 - 1031
  • [8] Prostate intrafraction motion during the preparation and delivery of MR-guided radiotherapy sessions on a 1.5T MR-Linac
    Keizer, D. M. de Muinck
    Kerkmeijer, G. W.
    Willigenburg, T.
    van Lier, A. L. H. M. W.
    den Hartogh, M. D.
    van Zyp, J. R. N. van der Voort
    de Groot-van Breugel, E. N.
    Raaymakers, B. W.
    Lagendijk, J. J. W.
    de Boer, J. C. J.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2020, 151 : 88 - 94
  • [9] Soft-tissue prostate intrafraction motion tracking in 3D cine-MR for MR-guided radiotherapy
    Keizer, D. M. de Muinck
    Kerkmeijer, L. G. W.
    Maspero, M.
    Andreychenko, A.
    van Zyp, J. R. N. van der Voort
    van den Berg, C. A. T.
    Raaymakers, B. W.
    Lagendijk, J. J. W.
    de Boer, J. C. J.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (23)
  • [10] On-line daily plan optimization combined with a virtual couch shift procedure to address intrafraction motion in prostate magnetic resonance guided radiotherapy
    Keizer, Daan M. de Muinck
    van Zyp, Jochem R. N. van der Voort
    De Groot-van Breugel, Eline N.
    Raaymakers, Bas W.
    Lagendijk, Jan J. W.
    de Boer, Hans C. J.
    [J]. PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2021, 19 : 90 - 95