Mass spectrometry methods to study protein-metabolite interactions

被引:10
作者
Guo, Hongbo [1 ]
Peng, Hui [2 ]
Emili, Andrew [1 ]
机构
[1] Univ Toronto, Donnelly Ctr Cellular & Biomol Res, Toronto, ON, Canada
[2] Univ Toronto, Dept Chem, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Protein-metabolite interaction; mass spectrometry; proteomics; metabolomics; AMINO-ACID-COMPOSITION; CHEMICAL PROTEOMICS; LIQUID-CHROMATOGRAPHY; LIGAND-BINDING; COMBINATORIAL LIBRARIES; SMALL MOLECULES; IDENTIFICATION; METABOLOMICS; TARGET; DRUG;
D O I
10.1080/17460441.2017.1378178
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Introduction: To understand and manipulate biochemical processes and signaling pathways, the knowledge of endogenous protein-metabolite interactions would be extremely helpful. Recent developments in precision mass spectrometry, high-throughput proteomics and sensitive metabolomic profiling are beginning to converge on a possible solution, heralding a new era of global metabolome-proteome interactome' studies that promise to change biomedical research and drug discovery.Areas covered: Here, we review innovative mass spectrometry-based methods and recent pioneering studies aimed at elucidating the physical associations of small molecule ligands with cellular proteins. The technologies covered belong to two main categories: tag-based and tag-free methods. We emphasize the latter in this review, and outline promising experimental workflows and key data analysis considerations involved.Expert opinion: Recent ground-breaking advances in chemical-proteomics technology and allied computational methods now make the global detection of protein-ligand engagement an increasingly attractive research problem. Despite ongoing challenges, rapid progress in the field is expected these coming next few years, leading to a refreshed systems biology research paradigm and much needed new opportunities for improving sparse drug discovery pipelines.
引用
收藏
页码:1271 / 1280
页数:10
相关论文
共 86 条
  • [31] MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data
    Katajamaa, M
    Miettinen, J
    Oresic, M
    [J]. BIOINFORMATICS, 2006, 22 (05) : 634 - 636
  • [32] Principles of protein-protein interactions: What are the preferred ways for proteins to interact?
    Keskin, Ozlem
    Gursoy, Attila
    Ma, Buyong
    Nussinov, Ruth
    [J]. CHEMICAL REVIEWS, 2008, 108 (04) : 1225 - 1244
  • [33] The Generating Function of CID, ETD, and CID/ETD Pairs of Tandem Mass Spectra: Applications to Database Search
    Kim, Sangtae
    Mischerikow, Nikolai
    Bandeira, Nuno
    Navarro, J. Daniel
    Wich, Louis
    Mohammed, Shabaz
    Heck, Albert J. R.
    Pevzner, Pavel A.
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2010, 9 (12) : 2840 - 2852
  • [34] Systematic and Quantitative Assessment of the Ubiquitin-Modified Proteome
    Kim, Woong
    Bennett, Eric J.
    Huttlin, Edward L.
    Guo, Ailan
    Li, Jing
    Possemato, Anthony
    Sowa, Mathew E.
    Rad, Ramin
    Rush, John
    Comb, Michael J.
    Harper, J. Wade
    Gygi, Steven P.
    [J]. MOLECULAR CELL, 2011, 44 (02) : 325 - 340
  • [35] Protein-RNA interactions: new genomic technologies and perspectives
    Koenig, Julian
    Zarnack, Kathi
    Luscombe, Nicholas M.
    Ule, Jernej
    [J]. NATURE REVIEWS GENETICS, 2012, 13 (02) : 77 - 83
  • [36] CAMERA: An Integrated Strategy for Compound Spectra Extraction and Annotation of Liquid Chromatography/Mass Spectrometry Data Sets
    Kuhl, Carsten
    Tautenhahn, Ralf
    Boettcher, Christoph
    Larson, Tony R.
    Neumann, Steffen
    [J]. ANALYTICAL CHEMISTRY, 2012, 84 (01) : 283 - 289
  • [37] Mass spectrometry-based metabolomics, analysis of metabolite-protein interactions, and imaging
    Lee, Do Yup
    Bowen, Benjamin P.
    Northen, Trent R.
    [J]. BIOTECHNIQUES, 2010, 49 (02) : 557 - +
  • [38] Cell-wide analysis of protein thermal unfolding reveals determinants of thermostability
    Leuenberger, Pascal
    Ganscha, Stefan
    Kahraman, Abdullah
    Cappelletti, Valentina
    Boersema, Paul J.
    von Mering, Christian
    Claassen, Manfred
    Picotti, Paola
    [J]. SCIENCE, 2017, 355 (6327)
  • [39] Predicting Network Activity from High Throughput Metabolomics
    Li, Shuzhao
    Park, Youngja
    Duraisingham, Sai
    Strobel, Frederick H.
    Khan, Nooruddin
    Soltow, Quinlyn A.
    Jones, Dean P.
    Pulendran, Bali
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (07)
  • [40] Systematic investigation of protein-small molecule interactions
    Li, Xiyan
    Wang, Xin
    Snyder, Michael
    [J]. IUBMB LIFE, 2013, 65 (01) : 2 - 8