Improving Approximate Expectation Propagation Massive MIMO Detector With Deep Learning

被引:9
作者
Ge, Yingmeng [1 ,2 ,3 ]
Tan, Xiaosi [1 ,2 ,3 ]
Ji, Zhenhao [1 ,2 ,3 ]
Zhang, Zaichen [1 ,2 ,3 ]
You, Xiaohu [1 ,2 ,3 ]
Zhang, Chuan [1 ,2 ,3 ]
机构
[1] Southeast Univ, LEADS, Nanjing 211189, Peoples R China
[2] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 211189, Peoples R China
[3] Purple Mt Labs, Nanjing 211189, Peoples R China
关键词
Detectors; Complexity theory; Antennas; Correlation; Massive MIMO; Training; Convergence; deep learning; model-driven; approximate expectation propagation; MODEL; DESIGN;
D O I
10.1109/LWC.2021.3095117
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter, an efficient model-driven deep learning (DL) based massive multiple-input multiple-output (MIMO) detector is proposed by improving the approximate expectation propagation (EPA) algorithm, named EPANet. Specifically, EPANet is constructed by unfolding the iterative EPA detector and adding learnable parameters to enhance the performance and convergence robustness through the DL approach. Only one training procedure is required in advance for EPANet to be reused for multiple detection tasks with different antenna configurations. Numerical results indicate that DL can bring significant performance improvement to EPA with various antenna settings. Besides, the proposed EPANet can outperform state-of-the-art (SOA) DL-based detectors with hardware-friendly complexity, especially under highly-correlated channels.
引用
收藏
页码:2145 / 2149
页数:5
相关论文
共 11 条
[1]  
[Anonymous], 2010, Modern Computer Arithmetic, DOI DOI 10.1017/CBO9780511921698
[2]   Expectation Propagation Detection for High-Order High-Dimensional MIMO Systems [J].
Cespedes, Javier ;
Olmos, Pablo M. ;
Sanchez-Fernandez, Matilde ;
Perez-Cruz, Fernando .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2014, 62 (08) :2840-2849
[3]  
Chen H, 2020, MODIFIED EP MIMO DET
[4]  
Cho Y., 2010, MIMO OFDMWIRELESS CO
[5]   Parametrization Based Limited Feedback Design for Correlated MIMO Channels Using New Statistical Models [J].
Godana, Bruhtesfa E. ;
Ekman, Torbjorn .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2013, 12 (10) :5172-5184
[6]   Model-Driven Deep Learning for MIMO Detection [J].
He, Hengtao ;
Wen, Chao-Kai ;
Jin, Shi ;
Li, Geoffrey Ye .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 :1702-1715
[7]   A Stochastic MIMO radio channel model with experimental validation [J].
Kermoal, JP ;
Schumacher, L ;
Pedersen, KI ;
Mogensen, PE ;
Frederiksen, F .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2002, 20 (06) :1211-1226
[8]   A Model-Driven Deep Learning Method for Massive MIMO Detection [J].
Liao, Jieyu ;
Zhao, Junhui ;
Gao, Feifei ;
Li, Geoffrey Ye .
IEEE COMMUNICATIONS LETTERS, 2020, 24 (08) :1724-1728
[9]   Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels [J].
Spencer, QH ;
Swindlehurst, AL ;
Haardt, M .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2004, 52 (02) :461-471
[10]   A Low-Complexity Massive MIMO Detection Based on Approximate Expectation Propagation [J].
Tan, Xiaosi ;
Ueng, Yeong-Luh ;
Zhang, Zaichen ;
You, Xiaohu ;
Zhang, Chuan .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (08) :7260-7272