Definability of singular integral operators on Morrey-Banach spaces

被引:26
作者
Ho, Kwok-Pun [1 ]
机构
[1] Educ Univ Hong Kong, Dept Math & Informat Technol, 10 Ping Rd, Hong Kong, Peoples R China
关键词
singular integral operator; Morrey space; Banach function space; variable exponent analysis; RIESZ-POTENTIALS; SOBOLEV EMBEDDINGS; VARIABLE EXPONENT; MAXIMAL OPERATOR; HARDY-SPACES; BOUNDEDNESS; COMMUTATORS; KERNELS;
D O I
10.2969/jmsj/81208120
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a definition of singular integral operators on Morrey- Banach spaces which include Orlicz-Morrey spaces and Morrey spaces with variable exponents. The main result of this paper ensures that the singular integral operator is well-defined on the Morrey-Banach spaces. Therefore, it provides a solid foundation for the study of singular integral operators on Morrey type spaces. As an application of our main result, we study commutators of singular integral operators on Morrey-Banach spaces.
引用
收藏
页码:155 / 170
页数:16
相关论文
共 35 条
[21]   VECTOR-VALUED SINGULAR INTEGRAL OPERATORS ON MORREY TYPE SPACES AND VARIABLE TRIEBEL-LIZORKIN-MORREY SPACES [J].
Ho, Kwok-Pun .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2012, 37 (02) :375-406
[22]  
Ho KP, 2012, ANAL MATH, V38, P173, DOI 10.1007/s10476-012-0302-5
[23]  
Kokilashvili V, 2008, ARMEN J MATH, V1, P18
[24]  
Lu S., 1998, HOKKAIDO MATH J, V27, P219, DOI DOI 10.14492/H0KMJ/1351001259.MR1608644
[25]   Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent [J].
Mizuta, Yoshihiro ;
Shimomura, Tetsu .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2008, 60 (02) :583-602
[26]   CONTINUITY PROPERTIES FOR RIESZ POTENTIALS OF FUNCTIONS IN MORREY SPACES OF VARIABLE EXPONENT [J].
Mizuta, Yoshihiro ;
Shimomura, Tetsu .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (01) :99-122
[27]   Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials [J].
Mizuta, Yoshihiro ;
Nakai, Eiichi ;
Ohno, Takao ;
Shimomura, Tetsu .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2010, 62 (03) :707-744
[28]   On the solutions of quasi-linear elliptic partial differential equations [J].
Morrey, Charles B., Jr. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1938, 43 (1-3) :126-166
[29]   HARDY-LITTLEWOOD MAXIMAL OPERATOR, SINGULAR INTEGRAL-OPERATORS AND THE RIESZ-POTENTIALS ON GENERALIZED MORREY SPACES [J].
NAKAI, E .
MATHEMATISCHE NACHRICHTEN, 1994, 166 :95-103
[30]   Orlicz-Morrey spaces and the Hardy-Littlewood maximal function [J].
Nakai, Eiichi .
STUDIA MATHEMATICA, 2008, 188 (03) :193-221