Definability of singular integral operators on Morrey-Banach spaces

被引:26
作者
Ho, Kwok-Pun [1 ]
机构
[1] Educ Univ Hong Kong, Dept Math & Informat Technol, 10 Ping Rd, Hong Kong, Peoples R China
关键词
singular integral operator; Morrey space; Banach function space; variable exponent analysis; RIESZ-POTENTIALS; SOBOLEV EMBEDDINGS; VARIABLE EXPONENT; MAXIMAL OPERATOR; HARDY-SPACES; BOUNDEDNESS; COMMUTATORS; KERNELS;
D O I
10.2969/jmsj/81208120
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a definition of singular integral operators on Morrey- Banach spaces which include Orlicz-Morrey spaces and Morrey spaces with variable exponents. The main result of this paper ensures that the singular integral operator is well-defined on the Morrey-Banach spaces. Therefore, it provides a solid foundation for the study of singular integral operators on Morrey type spaces. As an application of our main result, we study commutators of singular integral operators on Morrey-Banach spaces.
引用
收藏
页码:155 / 170
页数:16
相关论文
共 35 条
[1]  
Almeida A, 2008, GEORGIAN MATH J, V15, P195
[2]  
Alvarez J, 1996, CLIFFORD ALGEBRAS IN ANALYSIS AND RELATED TOPICS, P309
[3]  
[Anonymous], 2011, BANACH FUNCTION SPAC
[4]   Boundedness of the maximal operator in the local Morrey-Lorentz spaces [J].
Aykol, Canay ;
Guliyev, Vagif S. ;
Serbetci, Ayhan .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
[5]  
Bennett C., 1988, Interpolation of Operators
[6]   ON SINGULAR INTEGRALS [J].
CALDERON, AP ;
ZYGMUND, A .
AMERICAN JOURNAL OF MATHEMATICS, 1956, 78 (02) :289-309
[8]  
Chiarenza F., 1987, Rend. Mat. Appl., V7, P273
[9]   FACTORIZATION THEOREMS FOR HARDY SPACES IN SEVERAL VARIABLES [J].
COIFMAN, RR ;
ROCHBERG, R ;
WEISS, G .
ANNALS OF MATHEMATICS, 1976, 103 (03) :611-635
[10]  
Cruz-Uribe D, 2006, ANN ACAD SCI FENN-M, V31, P239