Intermittency in the turbulent Ekman layer

被引:5
作者
Morris, Karla [2 ]
Handler, Robert A. [3 ]
Rouson, Damian W. I. [1 ]
机构
[1] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA
[2] CUNY City Coll, Benjamin Levich Inst Physicochem Hydrodynam, New York, NY 10031 USA
[3] USN, Res Lab, Remote Sensing Div, Washington, DC 20375 USA
来源
JOURNAL OF TURBULENCE | 2011年 / 12卷 / 12期
关键词
Ekman boundary layer; turbulence; intermittency; dissipation; pseudo-dissipation; flatness; Tatarskii-Bragg scattering; radar; LARGE-EDDY-SIMULATION; DIRECT NUMERICAL SIMULATIONS; BOUNDARY; MODEL; STATISTICS; SCATTERING; MOTION; RADAR;
D O I
10.1080/14685248.2010.541258
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The structure of the turbulent Ekman layer is explored by examining the three-dimensional velocity fields generated by means of direct numerical simulation (DNS). Emphasis is placed on determining the relation between the instantaneous structure of the velocity field and the turbulent dissipation. The results of our simulation show the following: (1) The pseudo-dissipation exhibits lognormal behavior, with a magnitude range spanning many orders of magnitude, (2) in horizontal planes within the Ekman layer, spatially localized regions of high and low pseudo-dissipation are found, with a magnitude ratio of about 104 between low and high regions, (3) the Ekman layer is found to be composed of a series of quasi-periodic plume-like structures, and (4) the pseudo-dissipation is found to be large at the outer edge of a typical plume, with much lower levels in the plume interior. Conjectures are put forth regarding the relevance of this work to known observations of clear air radar scattering, and suggestions are made for possible future efforts.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [21] Self-similarity of turbulent jet flows with internal and external intermittency
    Gauding, M.
    Bode, M.
    Brahami, Y.
    Varea, E.
    Danaila, L.
    [J]. JOURNAL OF FLUID MECHANICS, 2021, 919
  • [22] PARALLEL IMPLEMENTATION OF A NAVIER-STOKES SOLVER: TURBULENT EKMAN LAYER DIRECT SIMULATION
    Waggy, Scott B.
    Kucala, Alec
    Biringen, Sedat
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2014, 11 (05)
  • [23] Swirl effects on external intermittency in turbulent jets
    Dinesh, K. K. J. Ranga
    Jenkins, K. W.
    Savill, A. M.
    Kirkpatrick, M. P.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2012, 33 (01) : 193 - 206
  • [24] The Wavy Ekman Layer: Langmuir Circulations, Breaking Waves, and Reynolds Stress
    McWilliams, James C.
    Huckle, Edward
    Liang, Jun-Hong
    Sullivan, Peter P.
    [J]. JOURNAL OF PHYSICAL OCEANOGRAPHY, 2012, 42 (11) : 1793 - 1816
  • [25] Intermittency and scaling in turbulent convection
    Emily S. C. Ching
    [J]. Acta Mechanica Sinica, 2003, 19 : 385 - 393
  • [26] Small-scale intermittency of premixed turbulent flames
    Roy, Amitesh
    Picardo, Jason R. R.
    Emerson, Benjamin
    Lieuwen, Tim C. C.
    Sujith, R. I.
    [J]. JOURNAL OF FLUID MECHANICS, 2023, 957
  • [27] A case of strong nonlinearity: Intermittency in highly turbulent flows
    Pomeau, Yves
    Le Berre, Martine
    Lehner, Thierry
    [J]. COMPTES RENDUS MECANIQUE, 2019, 347 (04): : 342 - 356
  • [28] A modified Ekman layer model
    Heinloo, Jaak
    Toompuu, Aleksander
    [J]. ESTONIAN JOURNAL OF EARTH SCIENCES, 2011, 60 (02) : 123 - 129
  • [29] Numerical modeling of atmospheric turbulent Ekman Flow
    Kurbatskiy, A.
    Kurbatskaya, L.
    [J]. 23RD INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS: ATMOSPHERIC PHYSICS, 2017, 10466
  • [30] A Tsai's model based S-PIV method for velocity measurements in a turbulent Ekman layer
    Sous, Damien
    Sommeria, Joel
    [J]. FLOW MEASUREMENT AND INSTRUMENTATION, 2012, 26 : 102 - 110