Augmenting the Rigidity of a Graph in R 2

被引:6
作者
Garcia, A. [1 ]
Tejel, J. [1 ]
机构
[1] Univ Zaragoza, Fac Ciencias, IUMA, Dep Metodos Estadist, E-50009 Zaragoza, Spain
关键词
Rigid graph; Laman graph; Augmenting problem; NP-completeness; EDGE-CONNECTIVITY AUGMENTATION; PLANE SKELETAL STRUCTURES; PSEUDO-TRIANGULATIONS; REALIZATIONS; ALGORITHMS; NETWORKS;
D O I
10.1007/s00453-009-9300-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given a Laman graph G, i.e. a minimally rigid graph in R (2), we provide a I similar to(n (2)) algorithm to augment G to a redundantly rigid graph, by adding a minimum number of edges. Moreover, we prove that this problem of augmenting is NP-hard for an arbitrary rigid graph G in R (2).
引用
收藏
页码:145 / 168
页数:24
相关论文
共 34 条
  • [1] [Anonymous], 1989, Matroid Theory and its Applications in Electric Network Theory and in Statics
  • [2] [Anonymous], 1979, Computers and Intractablity: A Guide to the Theory of NP-Completeness
  • [3] [Anonymous], 1999, Rigidity theory and applications
  • [4] Edge-connectivity augmentation with partition constraints
    Bang-Jensen, J
    Gabow, HN
    Jordán, T
    Szigeti, Z
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (02) : 160 - 207
  • [5] Berg AR, 2003, LECT NOTES COMPUT SC, V2832, P78
  • [6] A proof of Connelly's conjecture on 3-connected circuits of the rigidity matroid
    Berg, AR
    Jordán, T
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 88 (01) : 77 - 97
  • [7] Eren T., 2004, Commun. Inf. Syst, V3, P223, DOI DOI 10.4310/CIS.2003.V3.N4.A2
  • [8] Eswaran K. P., 1976, SIAM Journal on Computing, V5, P653, DOI 10.1137/0205044
  • [9] Rigid realizations of graphs on small grids
    Fekete, Z
    Jordán, T
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2005, 32 (03): : 216 - 222
  • [10] Fekete Z, 2004, LECT NOTES COMPUT SC, V3221, P299