Computing multiplicative inverses in finite fields by long division

被引:0
作者
Grosek, Otokar [1 ]
Fabsic, Tomas [1 ]
机构
[1] Slovak Univ Technol Bratislava, Fac Elect Engn & Informat Technol, Ilkovicova 3, Bratislava 81219, Slovakia
来源
JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS | 2018年 / 69卷 / 05期
关键词
finite fields; multiplicative inverses;
D O I
10.2478/jee-2018-0059
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We study a method of computing multiplicative inverses in finite fields using long division. In the case of fields of a prime order p, we construct one fixed integer d(p) with the property that for any nonzero field element a, we can compute its inverse by dividing d(p) by a and by reducing the result modulo p. We show how to construct the smallest d(p) with this property. We demonstrate that a similar approach works in finite fields of a non-prime order, as well. However, we demonstrate that the studied method (in both cases) has worse asymptotic complexity than the extended Euclidean algorithm.
引用
收藏
页码:400 / 402
页数:3
相关论文
共 50 条
  • [41] On the Complexity of Powering in Finite Fields
    Kopparty, Swastik
    STOC 11: PROCEEDINGS OF THE 43RD ACM SYMPOSIUM ON THEORY OF COMPUTING, 2011, : 489 - 498
  • [42] A note on powers in finite fields
    Aabrandt, Andreas
    Hansen, Vagn Lundsgaard
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2016, 47 (06) : 987 - 991
  • [43] Dedekind sums for finite fields
    Harnahata, Yoshinori
    DIOPHANTINE ANALYSIS AND RELATED FIELDS - DARF 2007/2008, 2008, 976 : 96 - 102
  • [44] On constructing permutations of finite fields
    Akbary, Amir
    Ghioca, Dragos
    Wang, Qiang
    FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (01) : 51 - 67
  • [45] Orthogonality over finite fields
    Basha, Aishah Ibraheam
    McDonald, Judi J.
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (22) : 7277 - 7289
  • [46] On arithmetic progressions in finite fields
    Lemos, Abilio
    Neumann, Victor G. L.
    Ribas, Savio
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (06) : 2323 - 2346
  • [47] DECOMPOSITION OF SUBSETS OF FINITE FIELDS
    Macourt, Simon
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2019, 61 (02) : 243 - 255
  • [48] Prescribing digits in finite fields
    Swaenepoel, Cathy
    JOURNAL OF NUMBER THEORY, 2018, 189 : 97 - 114
  • [49] On arithmetic progressions in finite fields
    Abílio Lemos
    Victor G. L. Neumann
    Sávio Ribas
    Designs, Codes and Cryptography, 2023, 91 : 2323 - 2346
  • [50] On automorphism groups of cyclotomic function fields over finite fields
    Ma, Liming
    Xing, Chaoping
    Yeo, Sze Ling
    JOURNAL OF NUMBER THEORY, 2016, 169 : 406 - 419