A Deterministic Model for Q Fever Transmission Dynamics within Dairy Cattle Herds: Using Sensitivity Analysis and Optimal Controls

被引:38
作者
Asamoah, Joshua Kiddy K. [1 ]
Jin, Zhen [1 ]
Sun, Gui-Quan [1 ]
Li, Michael Y. [2 ]
机构
[1] Shanxi Univ, Complex Syst Res Ctr, Taiyuan 030006, Peoples R China
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
基金
中国国家自然科学基金;
关键词
INFECTIOUS-DISEASE; GLOBAL STABILITY; VACCINATION; PARAMETERS; EPIDEMIC; ANIMALS; SPREAD;
D O I
10.1155/2020/6820608
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents a differential equation model which describes a possible transmission route for Q fever dynamics in cattle herds. The model seeks to ascertain epidemiological and theoretical inferences in understanding how to avert an outbreak of Q fever in dairy cattle herds (livestock). To prove the stability of the model's equilibria, we use a matrix-theoretic method and a Lyapunov function which establishes the local and global asymptotic behaviour of the model. We introduce time-dependent vaccination, environmental hygiene, and culling and then solve for optimal strategies. The optimal control strategies are necessary management practices that may increase animal health in a Coxiella burnetii-induced environment and may also reduce the transmission of the disease from livestock into the human population. The sensitivity analysis presents the relative importance of the various generic parameters in the model. We hope that the description of the results and the optimality trajectories provides some guidelines for animal owners and veterinary officers on how to effectively minimize the bacteria and control cost before/during an outbreak.
引用
收藏
页数:18
相关论文
共 34 条
[1]   Coxiella burnetii associated reproductive disorders in domestic animals-a critical review [J].
Agerholm, Jorgen S. .
ACTA VETERINARIA SCANDINAVICA, 2013, 55 :13
[2]  
Anderson A, 2013, MMWR RECOMM REP, V62, P1
[3]  
Anita S, 2011, MODEL SIMUL SCI ENG, P1
[4]  
[Anonymous], 2011, DYNAMICAL SYSTEMS PO
[5]  
Asamoah J. K. K., 2017, J. Appl. Math., V2017, DOI [DOI 10.1155/2017/2451237, 10.1155/2017/2451237]
[6]  
CDC, 2019, CTR DIS CONTR Q FEV
[7]  
CFSPH, 2019, EP LYMPH
[8]   Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model [J].
Chitnis, Nakul ;
Hyman, James M. ;
Cushing, Jim M. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2008, 70 (05) :1272-1296
[9]   Modelling effectiveness of herd level vaccination against Q fever in dairy cattle [J].
Courcoul, Aurelie ;
Hogerwerf, Lenny ;
Klinkenberg, Don ;
Nielen, Mirjam ;
Vergu, Elisabeta ;
Beaudeau, Francois .
VETERINARY RESEARCH, 2011, 42
[10]   Spread of Q fever within dairy cattle herds: key parameters inferred using a Bayesian approach [J].
Courcoul, Aurelie ;
Vergu, Elisabeta ;
Denis, Jean-Baptiste ;
Beaudeau, Francois .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2010, 277 (1695) :2857-2865