ESTIMATION OF POWER CONSUMPTION USING MACHINE LEARNING

被引:0
作者
Divyadharshini, M. [1 ]
Pavithra, S. [1 ]
Priya, Shanmuga R. [1 ]
机构
[1] Prince Dr K Vasudevan Coll Engn & Technol, Dept Comp Sci & Engn, Chennai, Tamil Nadu, India
关键词
Power Estimation; Data Prediction; Machine Learning; KW WIND TURBINE; SUB-ASSEMBLIES; RELIABILITY; VIBRATION;
D O I
10.9756/INTJECSE/V14I5.49
中图分类号
G76 [特殊教育];
学科分类号
040109 ;
摘要
A non-nosy checking framework assesses the conduct of individual electric apparatuses from the estimation of the absolute family unit load request bend. The all-out burden request bend is estimated at the passageway of the electrical cable into the house. The force utilization of individual apparatuses can be assessed utilizing a few AI procedures by investigating the trademark recurrence substance from the heap bend of the family unit. We have just built up the observing arrangement of ON/OFF states. This framework could build up adequate precision. In the following stage, the observing framework ought to have the option to appraise the force utilization for a climate control system with an inverter circuit.
引用
收藏
页码:487 / 494
页数:8
相关论文
共 27 条
[1]  
[Anonymous], 1995, NEWRAL NETWORKS PATT
[2]  
[Anonymous], 2000, APPL SUPPORT VECTOR
[3]  
Aravind A. R., 2022, AIP Conference Proceedings, V2393, DOI 10.1063/5.0074212
[4]  
Cherkassky V, 1997, IEEE Trans Neural Netw, V8, P1564, DOI 10.1109/TNN.1997.641482
[5]  
Deepigka M. S, INT J INNOVATIVE TEC, V9, P924
[6]  
divya P.Bhagya, 2017, INT RES J ENG TECHNO, V4, P802
[7]  
Gayathri J., 2022, AIP Conference Proceedings, V2393, DOI 10.1063/5.0074193
[8]  
Harshini V. S., 2019, 2019 INT C SMART STR, P1, DOI [10.1109/ICSSS.2019.8882866, DOI 10.1109/ICSSS.2019.8882866]
[9]   NONINTRUSIVE APPLIANCE LOAD MONITORING [J].
HART, GW .
PROCEEDINGS OF THE IEEE, 1992, 80 (12) :1870-1891
[10]   Computation of mechanical reliability for Sub- assemblies of 250 kW wind turbine through sensitivity analysis [J].
Hemalatha, S. ;
Selwyn, T. Sunder .
MATERIALS TODAY-PROCEEDINGS, 2021, 46 :3180-3186