CO2 capture by electrothermal swing adsorption with activated carbon fibre materials

被引:83
|
作者
An, Hui [1 ,2 ]
Feng, Bo [1 ]
Su, Shi [2 ]
机构
[1] Univ Queensland, Sch Engn, St Lucia, Qld 4072, Australia
[2] CSIRO, Kenmore, Qld 4069, Australia
关键词
CO2; capture; Activated carbon fibre materials; Electrothermal swing adsorption; VOLATILE ORGANIC-COMPOUNDS; GAS SEPARATION; SIZE DISTRIBUTION; MOLECULAR-SIEVE; METHANE STORAGE; PORE-SIZE; DESORPTION; COMPOSITES; MONOLITHS; REGENERATION;
D O I
10.1016/j.ijggc.2010.03.007
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents progress made in CO2 capture by electrothermal swing adsorption (ESA) with activated carbon fibre materials. The current barrier in CO2 capture and storage is the high cost of CO2 separation and capture. CO2 capture by electrothermal swing adsorption can potentially be more energy-effective than conventional temperature swing adsorption (TSA) and pressure swing adsorption (PSA), thus reduces CO2 capture cost. Activated carbon fibre materials have been utilised as the adsorbents due to their demonstrated capabilities for CO2 capture and their good electrical conductivity. This paper reviews the major results in the literature in the development of activated carbon fibre materials and the process of ESA. It also suggests future research directions in CO2 capture by electrothermal swing adsorption. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:16 / 25
页数:10
相关论文
共 50 条
  • [31] Adsorption of CO2 in presence of NOx and SOx on activated carbon textile for CO2 capture in post-combustion conditions
    Boumghar, S.
    Bedel, S.
    Sigot, L.
    Vallieres, C.
    ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2020, 26 (07): : 1173 - 1181
  • [32] Breakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 capture
    Garcia, S.
    Gil, M. V.
    Martin, C. F.
    Pis, J. J.
    Rubiera, F.
    Pevida, C.
    CHEMICAL ENGINEERING JOURNAL, 2011, 171 (02) : 549 - 556
  • [33] Strategies for CO2 capture from different CO2 emission sources by vacuum swing adsorption technology
    Jianghua Ling
    Penny Xiao
    Augustine Ntiamoah
    Dong Xu
    Paul Webley
    Yuchun Zhai
    Chinese Journal of Chemical Engineering, 2016, 24 (04) : 460 - 467
  • [34] A comparative study on CO2 capture performance of vacuum-pressure swing adsorption and pressure-temperature swing adsorption based on carbon pump cycle
    Zhao, Ruikai
    Zhao, Li
    Deng, Shuai
    Song, Chunfeng
    He, Junnan
    Shao, Yawei
    Li, Shuangjun
    ENERGY, 2017, 137 : 495 - 509
  • [35] Capture and Recovery of Isobutane by Electrothermal Swing Adsorption with Post-Desorption Liquefaction
    Mallouk, Kaitlin E.
    Johnsen, David L.
    Rood, Mark J.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (18) : 7070 - 7075
  • [36] Optimal Faujasite structures for post combustion CO2 capture and separation in different swing adsorption processes
    Prats, Hector
    Bahamon, Daniel
    Alonso, Gerard
    Gimenez, Xavier
    Gamallo, Pablo
    Sayos, Ramon
    JOURNAL OF CO2 UTILIZATION, 2017, 19 : 100 - 111
  • [37] Surface modification of activated carbon for CO2 adsorption
    Gao Feng
    Wang Yuan
    Li Cun-mei
    Xu Zhi-xiong
    Zhang Chang-ming
    Wang Jian-long
    Li Kai-xi
    NEW CARBON MATERIALS, 2014, 29 (02) : 96 - 101
  • [38] CO2 adsorption on chemically modified activated carbon
    Caglayan, Burcu Selen
    Aksoylu, A. Erhan
    JOURNAL OF HAZARDOUS MATERIALS, 2013, 252 : 19 - 28
  • [39] Numerical analysis on CO2 capture process of temperature swing adsorption (TSA): Optimization of reactor geometry
    Lian, Yahui
    Deng, Shuai
    Li, Shuangjun
    Guo, Zhihao
    Zhao, Li
    Yuan, Xiangzhou
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2019, 85 : 187 - 198
  • [40] Adsorption CO2 on activated carbon with surface modification
    Lin, Cheng
    Zhang, Huiyun
    Lin, Xiaoying
    Feng, Yunfei
    ADVANCES IN CHEMICAL, MATERIAL AND METALLURGICAL ENGINEERING, PTS 1-5, 2013, 634-638 : 746 - 750