Hetero-Interfaces on Cu Electrode for Enhanced Electrochemical Conversion of CO2 to Multi-Carbon Products

被引:34
|
作者
Li, Xiaotong [1 ,2 ]
Wang, Jianghao [1 ,2 ]
Lv, Xiangzhou [1 ,2 ]
Yang, Yue [1 ,2 ]
Xu, Yifei [1 ,2 ]
Liu, Qian [1 ,2 ]
Wu, Hao Bin [1 ,2 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, Inst Composites Sci Innovat InCSI, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2 reduction reaction; Metal-organic frameworks; Copper; Hetero-interfaces; Multi-carbon products; METAL-ORGANIC FRAMEWORKS; CARBON-DIOXIDE; REDUCTION; COPPER; ELECTROREDUCTION; ETHYLENE; UIO-66; HYDROCARBONS; ADSORPTION; COMPOSITE;
D O I
10.1007/s40820-022-00879-5
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Electrochemical CO2 reduction reaction (CO2RR) to multi-carbon products would simultaneously reduce CO2 emission and produce high-value chemicals. Herein, we report Cu electrodes modified by metal-organic framework (MOF) exhibiting enhanced electrocatalytic performance to convert CO2 into ethylene and ethanol. The Zr-based MOF, UiO-66 would in situ transform into amorphous ZrOx nanoparticles (a-ZrOx), constructing a-ZrOx/Cu hetero-interface as a dual-site catalyst. The Faradaic efficiency of multi-carbon (C2+) products for optimal UiO-66-coated Cu (0.5-UiO/Cu) electrode reaches a high value of 74% at - 1.05 V versus RHE. The intrinsic activity for C2+ products on 0.5-UiO/Cu electrode is about two times higher than that of Cu foil. In situ surface-enhanced Raman spectra demonstrate that UiO-66-derived a-ZrOx coating can promote the stabilization of atop-bound CO* intermediates on Cu surface during CO2 electrolysis, leading to increased CO* coverage and facilitating the C-C coupling process. The present study gives new insights into tailoring the adsorption configurations of CO2RR intermediate by designing dual-site electrocatalysts with hetero-interfaces.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Coverage of capping ligands determining the selectivity of multi-carbon products and morphological evolution of Cu nanocatalysts in electrochemical reduction of CO2
    Oh, Yusik
    Park, Jiwon
    Kim, Yohan
    Shim, Minyoung
    Kim, Taek-Seung
    Park, Jeong Young
    Byon, Hye Ryung
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (18) : 11210 - 11218
  • [22] Electrochemical reduction of CO2 towards multi-carbon products via a two-step process
    Fu, Xianbiao
    Zhang, Jiahao
    Kang, Yijin
    REACTION CHEMISTRY & ENGINEERING, 2021, 6 (04) : 612 - 628
  • [23] Recent progress and challenges of photocatalytic CO2 conversion into value-added multi-carbon products
    Li, Chunmei
    Wang, Jilong
    Tong, Lei
    Wang, Yun
    Zhang, Pingfan
    Zhu, Mingshan
    Dong, Hongjun
    COORDINATION CHEMISTRY REVIEWS, 2024, 502
  • [24] Enhance the activity of multi-carbon products for Cu via P doping towards CO2 reduction
    Kong, Xiangdong
    Wang, Cheng
    Zheng, Han
    Geng, Zhigang
    Bao, Jun
    Zeng, Jie
    SCIENCE CHINA-CHEMISTRY, 2021, 64 (07) : 1096 - 1102
  • [25] Progress of photocatalytic CO2 reduction toward multi-carbon products
    Fang, Jiaojiao
    Zhu, Chengyang
    Hu, Huiling
    Li, Jiaqi
    Li, Licheng
    Zhu, Haiyan
    Mao, Junjie
    SCIENCE CHINA-CHEMISTRY, 2024, 67 (12) : 3994 - 4013
  • [26] Enhance the activity of multi-carbon products for Cu via P doping towards CO2 reduction
    Xiangdong Kong
    Cheng Wang
    Han Zheng
    Zhigang Geng
    Jun Bao
    Jie Zeng
    Science China(Chemistry), 2021, 64 (07) : 1096 - 1102
  • [27] Enhancing Cu-ligand interaction for efficient CO2 reduction towards multi-carbon products
    Chen, Jingyi
    Fan, Lei
    Zhao, Yilin
    Yang, Haozhou
    Wang, Di
    Hu, Bihao
    Xi, Shibo
    Wang, Lei
    CHEMICAL COMMUNICATIONS, 2024, 60 (23) : 3178 - 3181
  • [28] Enhance the activity of multi-carbon products for Cu via P doping towards CO2 reduction
    Xiangdong Kong
    Cheng Wang
    Han Zheng
    Zhigang Geng
    Jun Bao
    Jie Zeng
    Science China Chemistry, 2021, 64 : 1096 - 1102
  • [29] Doping engineering of Cu-based catalysts for electrocatalytic CO2 reduction to multi-carbon products
    You, Shiya
    Xiao, Jiewen
    Liang, Shuyu
    Xie, Wenfu
    Zhang, Tianyu
    Li, Min
    Zhong, Ziyi
    Wang, Qiang
    He, Hong
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (16) : 5795 - 5818
  • [30] Emerging Cu-Based Tandem Catalytic Systems for CO2 Electroreduction to Multi-Carbon Products
    Qin, Qingqing
    Suo, Hongli
    Chen, Lijia
    Wang, Yun-Xiao
    Wang, Jia-Zhao
    Liu, Hua-Kun
    Dou, Shi-Xue
    Lao, Mengmeng
    Lai, Wei-Hong
    ADVANCED MATERIALS INTERFACES, 2024, 11 (13)