The SN2 reaction and its relationship with the Walden inversion, the Finkelstein and Menshutkin reactions together with theoretical calculations for the Finkelstein reaction

被引:6
作者
Alkorta, Ibon [1 ]
Elguero, Jose [1 ]
机构
[1] CSIC, Inst Quim Med, Juan Cierva 3, E-28006 Madrid, Spain
关键词
S(N)2; Walden; Finkelstein; Menshutkin; Atom effects; DFT calculations; MOLECULAR-ORBITAL METHODS; SPIN COUPLING-CONSTANTS; GAS-PHASE; AB-INITIO; NUCLEOPHILIC-SUBSTITUTION; ELECTRIC-FIELDS; PROTON-TRANSFER; HYDROGEN; NMR; COMPLEXES;
D O I
10.1007/s11224-021-01805-y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This communication gives an overview of the relationships between four reactions that although related were not always perceived as such: S(N)2, Walden, Finkelstein, and Menshutkin. Binary interactions (S(N)2 & Walden, S(N)2 & Menshutkin, S(N)2 & Finkelstein, Walden & Menshutkin, Walden & Finkelstein, Menshutkin & Finkelstein) were reported. Carbon, silicon, nitrogen, and phosphorus as central atoms and fluorides, chlorides, bromides, and iodides as lateral atoms were considered. Theoretical calculations provide Gibbs free energies that were analyzed with linear models to obtain the halide contributions. The M06-2x DFT computational method and the 6-311++G(d,p) basis set have been used for all atoms except for iodine where the effective core potential def2-TZVP basis set was used. Concerning the central atom pairs, carbon/silicon vs. nitrogen/phosphorus, we reported here for the first time that the effect of valence expansion was known for Si but not for P. Concerning the lateral halogen atoms, some empirical models including the interaction between F and I as entering and leaving groups explain the Gibbs free energies.
引用
收藏
页码:1755 / 1761
页数:7
相关论文
共 80 条
[41]   Heterocycles Incorporating a Pentacoordinated, Hypervalent Phosphorus Atom [J].
Krasowska, Dorota ;
Pokora-Sobczak, Patrycja ;
Jasiak, Aleksandra ;
Drabowicz, Jozef .
ADVANCES IN HETEROCYCLIC CHEMISTRY, VOL 124, 2018, 124 :175-231
[42]   Chiral Hypervalent, Pentacoordinated Phosphoranes [J].
Krasowska, Dorota ;
Chrzanowski, Jacek ;
Kielbasinski, Piotr ;
Drabowicz, Jozef .
MOLECULES, 2016, 21 (11)
[43]   Gas phase nucleophilic substitution [J].
Laerdahl, JK ;
Uggerud, E .
INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2002, 214 (03) :277-314
[45]   Solvent reaction coordinate for an SN2 reaction [J].
Leitold, Christian ;
Mundy, Christopher J. ;
Baer, Marcel D. ;
Schenter, Gregory K. ;
Peters, Baron .
JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (02)
[46]   An enzymatic Finkelstein reaction: fluorinase catalyses direct halogen exchange [J].
Lowe, Phillip T. ;
Cobb, Steven L. ;
O'Hagan, David .
ORGANIC & BIOMOLECULAR CHEMISTRY, 2019, 17 (32) :7493-7496
[47]  
Mazor, 1975, ANAL CHEM ORGANIC HA
[48]  
McNaught A. D, 1997, COMPENDIUM CHEM TERM, V2nd
[49]   Influence of Vibrational Excitation on the Reaction of F- with CH3I: Spectator Mode Behavior, Enhancement, and Suppression [J].
Michaelsen, Tim ;
Bastian, Bjorn ;
Ayasli, Atilay ;
Struebin, Patrick ;
Meyer, Jennifer ;
Wester, Roland .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (11) :4331-4336
[50]   Imaging nucleophilic substitution dynamics [J].
Mikosch, J. ;
Trippel, S. ;
Eichhorn, C. ;
Otto, R. ;
Lourderaj, U. ;
Zhang, J. X. ;
Hase, W. L. ;
Weidemueller, M. ;
Wester, R. .
SCIENCE, 2008, 319 (5860) :183-186