A three-wave interaction model with self-consistent sources: The (partial derivative)over-bar-dressing method and solutions

被引:24
作者
Kuang, Yonghui [1 ]
Zhu, Junyi [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
(partial derivative)over-bar-Dressing method; Three-wave interaction model; Self-consistent sources; Soliton solution; N-SOLITON SOLUTIONS; KDV EQUATION; SYMMETRY CONSTRAINTS; RESONANT INTERACTION; CONSTRUCTION; INTEGRATION; SCATTERING; SYSTEMS;
D O I
10.1016/j.jmaa.2015.01.072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, we study the three-wave interaction model with self-consistent sources by virtue of the (partial derivative) over bar -dressing method. The explicit solutions, including one-soliton, two-soliton solution are obtained. In addition, on the basis of the three-wave interaction model with self-consistent sources, we obtain the generation of second harmonics with self-consistent sources. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:783 / 793
页数:11
相关论文
共 42 条
[1]  
Ablowitz M., 1981, SOLITONS INVERSE SCA, DOI [10.1137/1.9781611970883, DOI 10.1137/1.9781611970883]
[2]   LINEAR SPECTRAL PROBLEMS, NON-LINEAR EQUATIONS AND THE DELTA-BAR-METHOD [J].
BEALS, R ;
COIFMAN, RR .
INVERSE PROBLEMS, 1989, 5 (02) :87-130
[3]   THE NON-LOCAL PARTIAL-DIFFERENTIAL-EQUATION PROBLEM AND (2+1)-DIMENSIONAL SOLITON-EQUATIONS [J].
BOGDANOV, LV ;
MANAKOV, SV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (10) :L537-L544
[4]   NONLINEAR RESONANT SCATTERING AND PLASMA INSTABILITY - AN INTEGRABLE MODEL [J].
CLAUDE, C ;
LATIFI, A ;
LEON, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (12) :3321-3330
[5]   Exact solutions of the 3-wave resonant interaction equation [J].
Degasperis, A ;
Lombardo, S .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 214 (02) :157-168
[6]  
Doktorov E.V, 2007, A Dressing Method in Mathematical Physics
[7]   OPTICAL SOLITONS IN MEDIA WITH RESONANT AND NON-RESONANT SELF-FOCUSING NONLINEARITIES [J].
DOKTOROV, EV ;
VLASOV, RA .
OPTICA ACTA, 1983, 30 (02) :223-232
[8]   THE DRESSING METHOD AND NONLOCAL RIEMANN-HILBERT PROBLEMS [J].
FOKAS, AS ;
ZAKHAROV, VE .
JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (01) :109-134
[9]   On the N-wave equations and soliton interactions in two and three dimensions [J].
Gerdjikov, V. S. ;
Ivanov, R. I. ;
Kyuldjiev, A. V. .
WAVE MOTION, 2011, 48 (08) :791-804
[10]   SOLITON-SOLUTIONS OF THE MELNIKOV EQUATIONS [J].
HASE, Y ;
HIROTA, R ;
OHTA, Y ;
SATSUMA, J .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1989, 58 (08) :2713-2720