Generalized frame multiresolution analysis of abstract Hilbert spaces and its applications

被引:1
|
作者
Papadakis, M [1 ]
机构
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
关键词
wavelets; unitary groups; multiresolution analysis; dimension function; frames;
D O I
10.1117/12.408601
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We define a very generic class of multiresolution analysis of abstract Hilbert spaces. Their core subspaces have a frame produced by the action of an abelian unitary group on a perhaps infinite subset of the core subspace. which rye call frame multiscaling vector set. We characterize the associated frame multiwavelet vector sets by generalizing the concept of the low and high pass filters and the Quadrature Mirror filter condition. We include an extensive overview of related work of other and Re conclude with some examples.
引用
收藏
页码:165 / 175
页数:11
相关论文
共 50 条
  • [1] Generalized consistent sampling in abstract Hilbert spaces
    Kwon, Kil Hyun
    Lee, Dae Gwan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (01) : 375 - 391
  • [2] A Generalized Norm on Reproducing Kernel Hilbert Spaces and Its Applications
    Altwaijry, Najla
    Feki, Kais
    Minculete, Nicusor
    AXIOMS, 2023, 12 (07)
  • [3] Functional inequalities on abstract Hilbert spaces and applications
    Feng-Yu Wang
    Mathematische Zeitschrift, 2004, 246 : 359 - 371
  • [4] Functional inequalities on abstract Hilbert spaces and applications
    Wang, FY
    MATHEMATISCHE ZEITSCHRIFT, 2004, 246 (1-2) : 359 - 371
  • [5] Frames, Riesz systems and multiresolution analysis in Hilbert spaces
    van Eijndhoven, SJL
    Oonincx, PJ
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1999, 10 (03): : 369 - 382
  • [6] A CLASS OF GENERALIZED HILBERT-SPACES WITH APPLICATIONS
    MIKOLAS, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1988, 68 (05): : T470 - T472
  • [7] Controlled generalized fusion frame in the tensor product of Hilbert spaces
    Ghosh, Prasenjit
    Samanta, Tapas Kumar
    ARMENIAN JOURNAL OF MATHEMATICS, 2021, 13 (13): : 1 - 18
  • [8] Invertibility of generalized g-frame multipliers in Hilbert spaces
    Moosavianfard, Z.
    Abolghasemi, M.
    Tolooei, Y.
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (08): : 1590 - 1609
  • [9] General frame multiresolution analysis and its wavelet frame representation
    Li, M
    Ogawa, H
    Yamashita, Y
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1996, E79A (10) : 1713 - 1721
  • [10] Tomography in abstract Hilbert spaces
    Man'ko, V. I.
    Marmo, G.
    Simoni, A.
    Ventriglia, F.
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2006, 13 (03): : 239 - 253