Kinetic approach to the development of computational dynamic models for brittle solids

被引:12
作者
Grigoriev, Aleksandr S. [1 ]
Shilko, Evgeny V. [1 ,2 ]
Skripnyak, Vladimir A. [2 ]
Psakhie, Sergey G. [1 ,2 ]
机构
[1] RAS, Inst Strength Phys & Mat Sci SB, 2-4 Akad Ave, Tomsk 634055, Russia
[2] Natl Res Tomsk State Univ, 36 Lenin Ave, Tomsk 634050, Russia
关键词
Dynamic loading; Brittle materials; Kinetic theory of strength; Discrete element method; Lagrangian numerical methods; INCUBATION-TIME CRITERION; CRACK-PROPAGATION; CONCRETE; FRACTURE; STRENGTH; BEHAVIOR; ROCK; SIMULATION; FAILURE; IMPACT;
D O I
10.1016/j.ijimpeng.2018.09.018
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The paper presents an approach to developing the mathematical formalism of the discrete element method to numerically study the inelastic behavior and fracture of brittle materials under dynamic loading. The approach adopts the basic principles of the kinetic theory of strength which postulate the finite time of nucleation of discontinuities and relaxation of local stresses in the material. A general methodology is proposed for constructing dynamic (kinetic) models of the mechanical behavior of a discrete element based on quasi-static models and using three dynamic material parameters (time parameters). The physical meaning of these parameters is discussed, and a method is proposed for estimating the magnitude of the parameters for a considered material using standard experimental data on its mechanical characteristics. The approach is verified by a dynamic formulation of two-parameter models of inelasticity and strength of brittle materials within the method of simply deformable discrete elements. The proposed way to the dynamic generalization of conventional quasi-static mechanical models is applicable to various Lagrangian numerical methods and makes it possible to numerically study the dynamic behavior features and to predict the mechanical characteristics of brittle materials at different strain rates (up to strain rates 10(3) s(-1)) and different types of stress state.
引用
收藏
页码:14 / 25
页数:12
相关论文
共 80 条
[1]  
Abd Elaty M.A.A., 2014, HBRC J., V10, P145, DOI [10.1016/j.hbrcj.2013.09.005, DOI 10.1016/J.HBRCJ.2013.09.005]
[2]   Drucker-Prager Criterion [J].
Alejano, Leandro R. ;
Bobet, Antonio .
ROCK MECHANICS AND ROCK ENGINEERING, 2012, 45 (06) :995-999
[3]   Hybrid finite-discrete element modelling of dynamic fracture and resultant fragment casting and muck-piling by rock blast [J].
An, H. M. ;
Liu, H. Y. ;
Han, Haoyu ;
Zheng, Xin ;
Wang, X. G. .
COMPUTERS AND GEOTECHNICS, 2017, 81 :322-345
[4]  
[Anonymous], 2005, Experimental rock deformation the brittle field, DOI [DOI 10.1007/3-540-26339-X_7, DOI 10.1007/3-540-26339-X7]
[5]  
[Anonymous], 2000, INT J NUMER METH ENG, DOI 10.1016/C2009-0-26332-X
[6]  
[Астафуров С.В. Astafurov S.V.], 2017, [Вестник Пермского национального исследовательского политехнического университета. Механика, PNRPU Mechanics Bulletin, Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika], P208, DOI 10.15593/perm.mech/2017.1.12
[7]   DEM simulation of concrete fracture and crack evolution [J].
Beckmann, Birgit ;
Schicktanz, Kai ;
Reischl, Dirk ;
Curbach, Manfred .
STRUCTURAL CONCRETE, 2012, 13 (04) :213-220
[8]  
Bicanic N., 2017, ENCY COMPUTATIONAL M, P1, DOI DOI 10.1002/9781119176817.ECM2006
[9]   COMPRESSIVE BEHAVIOR OF CONCRETE AT HIGH-STRAIN RATES [J].
BISCHOFF, PH ;
PERRY, SH .
MATERIALS AND STRUCTURES, 1991, 24 (144) :425-450
[10]   Dynamic strengths and toughness of an ultra high performance fibre reinforced concrete [J].
Bragov, A. M. ;
Petrov, Yu. V. ;
Karihaloo, B. L. ;
Konstantinov, A. Yu. ;
Lamzin, D. A. ;
Lomunov, A. K. ;
Smirnov, I. V. .
ENGINEERING FRACTURE MECHANICS, 2013, 110 :477-488