Unraveling hydrometeor mixtures in polarimetric radar measurements

被引:28
作者
Besic, Nikola [1 ,2 ]
Gehring, Josue [1 ]
Praz, Christophe [1 ]
Figueras i Ventura, Jordi [2 ]
Grazioli, Jacopo [2 ]
Gabella, Marco [2 ]
Germann, Urs [2 ]
Berne, Alexis [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Environm Remote Sensing Lab LTE, Lausanne, Switzerland
[2] MeteoSwiss, Radar, Satellite, Nowcasting Dept MDR, Locarno, Switzerland
关键词
INDEPENDENT COMPONENT ANALYSIS; CLUSTER-BASED METHOD; CLASSIFICATION SCHEME; COHERENT BACKSCATTER; TARGET DECOMPOSITION; PRECIPITATION; MICROPHYSICS; LAND;
D O I
10.5194/amt-11-4847-2018
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Radar-based hydrometeor classification typically comes down to determining the dominant type of hydrometeor populating a given radar sampling volume. In this paper we address the subsequent problem of inferring the secondary hydrometeor types present in a volume - the issue of hydrometeor de-mixing. The present study relies on the semi-supervised hydrometeor classification proposed by Besic et al. (2016) but nevertheless results in solutions and conclusions of a more general character and applicability. In the first part, oriented towards synthesis, a bin-based de-mixing approach is proposed, inspired by the conventional coherent and linear decomposition methods widely employed across different remote-sensing disciplines. Intrinsically related to the concept of entropy, introduced in the context of the radar hydrometeor classification in Besic et al. (2016), the proposed method, based on the hypothesis of the reduced random interferences of backscattered signals, estimates the proportions of different hydrometeor types in a given radar sampling volume, without considering the neighboring spatial context. Plausibility and performances of the method are evaluated using C-and X-band radar measurements, compared with hydrometeor properties derived from a Multi-Angle Snowflake Camera instrument. In the second part, we examine the influence of the potential residual random interference contribution in the backscattering from different hydrometeors populating a radar sampling volume. This part consists in adapting and testing the techniques commonly used in conventional incoherent decomposition methods to the context of weather radar polarimetry. The impact of the residual incoherency is found to be limited, justifying the hypothesis of the reduced random interferences even in a case of mixed volumes and confirming the applicability of the proposed bin-based approach, which essentially relies on first-order statistics.
引用
收藏
页码:4847 / 4866
页数:20
相关论文
共 44 条
[1]   A New Fuzzy Logic Hydrometeor Classification Scheme Applied to the French X-, C-, and S-Band Polarimetric Radars [J].
Al-Sakka, Hassan ;
Boumahmoud, Abdel-Amin ;
Fradon, Beatrice ;
Frasier, Stephen J. ;
Tabary, Pierre .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2013, 52 (10) :2328-2344
[2]  
[Anonymous], 2004, Polarimetric Doppler Weather Radar: Principles and Applications
[3]  
BALAKRISHNAN N, 1990, J ATMOS SCI, V47, P565, DOI 10.1175/1520-0469(1990)047<0565:EORAHR>2.0.CO
[4]  
2
[5]   A Semisupervised Robust Hydrometeor Classification Method for Dual-Polarization Radar Applications [J].
Bechini, Renzo ;
Chandrasekar, V. .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2015, 32 (01) :22-47
[6]   Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach [J].
Besic, Nikola ;
Figueras i Ventura, Jordi ;
Grazioli, Jacopo ;
Gabella, Marco ;
Germann, Urs ;
Berne, Alexis .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2016, 9 (09) :4425-4445
[7]   Polarimetric Incoherent Target Decomposition by Means of Independent Component Analysis [J].
Besic, Nikola ;
Vasile, Gabriel ;
Chanussot, Jocelyn ;
Stankovic, Srdjan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (03) :1236-1247
[8]   Hyperspectral Remote Sensing Data Analysis and Future Challenges [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Camps-Valls, Gustavo ;
Scheunders, Paul ;
Nasrabadi, Nasser M. ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) :6-36
[9]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[10]   MULTIFREQUENCY RADAR OBSERVATIONS COLLECTED IN SOUTHERN FRANCE DURING HYMEX-SOP1 [J].
Bousquet, O. ;
Berne, A. ;
Delanoe, J. ;
Dufournet, Y. ;
Gourley, J. J. ;
Van-Baelen, J. ;
Augros, C. ;
Besson, L. ;
Boudevillain, B. ;
Caumont, O. ;
Defer, E. ;
Grazioli, J. ;
Jorgensen, D. J. ;
Kirstetter, P. -E. ;
Ribaud, J. -F. ;
Beck, J. ;
Delrieu, G. ;
Ducrocq, V. ;
Scipion, D. ;
Schwarzenboeck, A. ;
Zwiebel, J. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2015, 96 (02) :267-282